Finite model theory and logics for AI

Grégoire Fournier

GSCL

March 3, 2025

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Graph neural networks

Graph neural networks (GNNs) are deep learning architectures for machine learning problems on graphs.

$$\eta(\mathbf{v}) := \mathit{comb}(\zeta(\mathbf{v}), \sum_{w \in \mathit{N}_{\mathcal{G}}(\mathbf{v})} \zeta(w))$$

$$\eta(\mathbf{v}) := comb(\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 2\\ 2 \end{pmatrix})$$

The combination function *comb* is learned.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Bounded Variable Logic

Let C be the extension of first-order logic (*FO*) by counting quantifiers $\exists^{\geq p}$.

 C_q consists of all formulas of C with at most q variables and C[k] formulas of quantifier rank at most k; $C_q[k] = C_q \cap C[k]$.

We interpret formulas over labelled graphs; variables range over the vertices.

Example

For every k, a $FO_3[k]$ formula stating that the diameter of a graph is at most 2^k is:

$$\delta_{2^{k+1}}(x,y) = \exists z \ (\delta_{2^k}(x,z) \land \delta_{2^k}(z,y))$$

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Guarded Counting Logic

The guarded fragment \mathcal{GC} restricts quantifiers to range over the neighbours of the current nodes.

Example

The following \mathcal{GC}_2 -formula $\Phi(x)$ says that vertex x has at most 1 neighbour that has more than 3 neighbours with label P_1 :

$$\Phi(x) := \neg \exists^{\geq 2} y \ (E(x,y) \land \exists^{\geq 4} x \ (E(y,x) \land P_1(x)))$$

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

GNNs and the logic \mathcal{GC}_2

Theorem

Let Q be a unary formula expressible in graded modal logic \mathcal{GC}_2 . Then there is a GNN that expresses Q.

Theorem (Barceló et al. (2020))

Let Q be a unary formula expressible by a GNN and also expressible in first-order logic. Then Q is expressible in \mathcal{GC}_2 .

Open problem Grohe (2021): How to characterize the complexity of formulas produced by GNNs?

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Invariants, colouring and the WL algorithm

Definition (Colouring algorithm (or 1-WL))

For every graph G, we define a sequence of vertex colourings $cr^{(t)}(G)$ as follows:

• For every $v \in V(G)$, let $cr^{(0)}(G, v) := col(G, v)$.

$$cr^{(t+1)}(G,v) := (cr^{(t)}(G,v), \{\{cr^{(t)}(G,w)|w \in N(v)\}\})$$

- The stable colouring is denoted $cr^{(\infty)}(G)$.
- $cr^{(t)}$ is a vertex invariant.

In the same way we can define the *k*-dimensional WL algorithm $(wl_k^{(\infty)})$.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Invariants, colouring and the WL algorithm

$$cr^{(t+1)}(G,v) := (cr^{(t)}(G,v), \{ \{ cr^{(t)}(G,w) | w \in N(v) \} \})$$

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Invariants, colouring and the WL algorithm

Theorem (Cai et al. (1989))

For all graphs G, G' tfae:

- $\circ wl_k^{(\infty)}$ does not distinguish G and G'.
- \circ *G* and *G'* satisfy the same C_{k+1} -sentences.

Theorem

Let $t \ge 0$. Then for all graphs G, G' and vertices $v \in V(G), v' \in V(G')$ tfae: $\circ cr^{(t)}(G, v) = cr^{(t)}(G', v');$

◦ for all formulas $\phi(x) \in \mathcal{GC}_2[t]$, $G \Vdash \phi(v)$ iff $G' \Vdash \phi(v')$.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF games

Definition (EF games)

The games is played on two relational structures \mathfrak{A} and \mathfrak{B} , and it has two player, a spoiler and a duplicator. It goes as follows:

- For *n* rounds:
 - $\star\,$ The spoiler makes a move by picking an element of $\mathfrak A$ or $\mathfrak B.$
 - $\star\,$ The duplicator responds by picking an element in the other structure.
- The *n*-rounds game ends in the position $\vec{a} = (a_1, \ldots, a_n)$, $\vec{b} = (b_1, \ldots, b_n)$. Duplicator wins if:

 $((\vec{a}, \vec{c}^{\mathfrak{A}}), (\vec{b}, \vec{c}^{\mathfrak{B}}))$ is a partial isomorphism btw. \mathfrak{A} and \mathfrak{B} .

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF games

Theorem The following are equivalent:

- $\circ \mathfrak{A}$ and \mathfrak{B} agree on FO[k].
- $\mathfrak{A} \equiv_k \mathfrak{B}$ (duplicator has a winning strategy in k-round game).

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Theorem

Let k > 0, L_1 , L_2 be linear orders of length at least 2^k , then $L_1 \equiv_k L_2$ and $L_1 \equiv_{FO[k]} L_2$.

Theorem

(F):Let q, k > 0, and let L_1, L_2 be linear orders of length at least $(q+1)^k$, then $L_1 \equiv_{C^q[k]} L_2$.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF game theory and applications

- Pebble games to describe the quantifier rank of \mathcal{L}_k and \mathcal{C}_k Cai et al. (1989).
- EF game for formula size, in logics such as FO₂(TC) Adler and Immerman (2003), predicate FO Hella and Väänänen (2012), application to linear order of the FO game Grohe and Schweikardt (2005).
- (*F*): EF game characterisation of formula size, on C with bounded variables.
- **(F)**: Application to linear orders of the EF game characterisation of formula size on C.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF game for formula size on counting logic

Finite model theory and logics for Al A Variant of EF games on $\mathcal C$ for formula size

We define three levels of sets of structures for the game:

- The tuples (\mathcal{A}, α) of structure and assignment are interpretations **(EF)**.
- We call families the sets of interpretations (written A) (Counting).
- Finally tribes are sets of families, we have two, one on each side of the game (written A^+) (MS games).

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

A Variant of EF games on $\ensuremath{\mathcal{C}}$ for formula size

We define two main operations:

Big Update :
$$A^+(F_{A^+}^k/j) := \{A(F^k/j) : A \in A^+, F^k = F_{A^+}^k(A)\}$$

Multiply : $A^+(*^k/j) := \{A(F^k,j) : A \in A^+, F^k \in \mathcal{F}_A^k\}$

Where $\mathcal{F}_{A}^{k} \ni F^{k}$ is the set of all *k*-choice functions on *A*.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

A Variant of EF games on $\mathcal C$ for formula size

Suppose the position after *m* moves the position is (w, L, A^+, B^+) where $dom(A^+) = dom(B^+)$.

The left k-supplementing move (\exists^k) goes as follows:

Player I chooses two natural numbers $j \in [n], k \in \mathbb{N}^*$ and a *k*-choice function F^k for A^+ , then the game continues from the position:

$$(w-1, L, A^+(F^k/j), B^+(*^k/j))$$

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Succinctness on linear orders

Theorem (Grohe and Schweikardt (2005)) Let A_m and A_n be two linear orders of size n > m > 0.

 \mathcal{A}_m and \mathcal{A}_n cannot be distinguished by an $FO_3 - (<, succ, min, max)$ sentence of size less than $\frac{\sqrt{m}}{2}$.

Theorem (F)

 \mathcal{A}_m and \mathcal{A}_n cannot be distinguished by an $\mathcal{C}_3^{(k)} - (<, succ, min, max)$ sentence of size less than $\frac{\sqrt{m}}{k+1}$.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Back to the open problem

Open problem Grohe (2021): How to characterize the complexity of formulas produced by GNNs?

- (F): EF game characterisation of formula size, on C with bounded variables, and application to linear orders.
- (F): Application to linear orders of the EF game characterisation of formula size on C.
- Next step: Application to graphs.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

References

- Adler, M. and Immerman, N. (2003). An n! lower bound on formula size.
- Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P. (2020). The logical expressiveness of graph neural networks.
- Cai, J.-Y., Furer, M., and Immerman, N. (1989). An optimal lower bound on the number of variables for graph identification.
- Grohe, M. (2021). The logic of graph neural networks.
- Grohe, M. and Schweikardt, N. (2005). The succinctness of first-order logic on linear orders.
- Hella, L. and Väänänen, J. (2012). The size of a formula as a measure of complexity.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Model theory of finite structures

Theorem (Completeness)

 ψ is a consequence of T iff ψ is formally provable from T. For which we have the direct consequence:

Theorem

The set of logically valid sentences of first-order logic is recursively enumerable. (true in all structures, under all assignments)

But if we consider only finite models, this fails:

Theorem (Trakhtenbrot)

The set of sentences of first-order logic valid in all finite structures is not recursively enumerable.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Examples

Example

- There is a theory T such that T has no finite models, and every finite subset of T has a finite model.

Proof.

Consider
$$\{\lambda_n := \exists x_1 \dots x_n \bigwedge_{i \neq j} \neg (x_i = x_j) : n \in \mathbb{N}\}.$$

– An inexpressibility proof: Assume that $\sigma=\emptyset,$ then EVEN is not FO definable.

Proof.

Suppose it is by Φ . $T_1 = \{\Phi\} \cup \{\lambda_k | k > 0\}$ $T_2 = \{\neg \Phi\} \cup \{\lambda_k | k > 0\}$ By LS theorem, T_1 and T_2 have a countable

By LS theorem, T_1 and T_2 have a countable model, \mathfrak{A}_1 and \mathfrak{A}_2 that are isomorphic and satisfy $\mathfrak{A}_1 \Vdash \Phi$ and $\mathfrak{A}_2 \Vdash \neg \Phi$. \Box

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

The idea behind EF games

A rank-*k m*-type of **a** over \mathfrak{A} is $tp_k(\mathfrak{A}, \mathbf{a}) = \{ \phi \in FO[k] \mid \mathfrak{A} \mid \Vdash \phi(\mathbf{a}) \}.$

Theorem

- For a finite relational vocabulary σ, the number of different rank-k m-types is finite.
- Let T₁,... T_n enumerate all the rank-k m-types. There exist FO[k] formulas (α_i(x))_{i≤n} such that:
 - ★ For every 𝔅 and $a \in A^m$, it is the case that 𝔅 \Vdash $\alpha_i(x)$ iff $tp_k(𝔅, a) = T_i$ and,
 - * Every FO[k] formula $\phi(\mathbf{x})$ in m free variables is equivalent to a disjunction of some α_i 's.

In particular, two finite structures that agree on all FO sentences are isomorphic.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Theorem

Let k > 0, L_1 , L_2 be linear orders of length at least 2^k , then $L_1 \equiv_k L_2$ and $L_1 \equiv_{FO[k]} L_2$.

Recall $C_{\ell}[k]$ is the counting logic where the quantifier rank is k and the counting rank is ℓ .

Theorem

Let c, k > 0, and let L_1, L_2 be linear orders of length at least $(\ell + 1)^k$, then $L_1 \equiv_{C_\ell[k]} L_2$.

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

Proof.

We prove that $L_1 \equiv_k L_2$ in the expanded vocabulary with the constants *min* and *max*. Assume $L_1 = [n]$ and $L_2 = [m]$ m with $n, m \ge 2^k + 1$. After round *i*, the moves are denoted $\vec{a} = (a_{-1}, a_0, a_1, \ldots, a_i)$ such that $(a_{-1}, a_0) = (min^{L_1}, max_1^L)$, similarly for \vec{b} . We claim that duplicator can maintain after move *i*, for $-1 \le j, l \le i$: \circ If $d(a_j, a_l) < 2^{k-i}$, then $d(b_j, b_l) = d(a_j, a_l)$.

 \circ If $d(a_j, a_l) \geq 2^{k-i}$, then $d(b_j, b_l) \geq 2^{k-i}$.

$$\circ a_j \leq a_l \text{ iff } b_j \leq b_l.$$

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF game for formula size on counting logic

Finite model

theory and logics for AI

EF games for counting logic

The games is played on two relational structures \mathfrak{A} and \mathfrak{B} , and it has two player, a spoiler and a duplicator. It goes as follows:

- \circ For *n* rounds:
 - ★ Spoiler makes a move by picking a set A of 𝔅 or 𝔅.
 Duplicator selects a set B in the other structure.
 - * Spoiler picks and element in B, duplicator selects an element in A.
- The *n*-rounds game ends in the position $\vec{a} = (a_1, \ldots, a_n), \ \vec{b} = (b_1, \ldots, b_n).$ Duplicator wins if: $((\vec{a}, \vec{c}^{\mathfrak{A}}), (\vec{b}, \vec{c}^{\mathfrak{B}}))$ is a partial isomorphism btw. \mathfrak{A} and \mathfrak{B} .

Finite model theory and logics for Al

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF games for formula size

The game $EF_w(A, B)$ has two players, where A and B are sets of structures. From a position (w, A, B). There are four possibilities for the continuation of the game:

 $\star \lor$ move: Player I first chooses $1 \le u, v < w$ st.

u + v = w.

Then Player I represents A as $C \cup D$.

The game continues from (u, C, B) or from (v, D, B) according to player II.

- \star \land move: similar but splits *B*.
- ★ \exists^k move: Player I chooses a choice function F for A. Then the game continues from (w - 1, A(F/j), B(*/j)).
- * \forall^k move: similar but chooses on A.

Player II wins the game if they reach a position (1, A, B) and there is no atomic formula distinguishing A and B.

Finite model theory and logics for Al

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory

EF games for formula size and counting

No natural way to combine the two games, as seen in the following counter example:

The formula $\exists^{\geq 3}B(x) \wedge R(x)$ distinguished \mathfrak{A} and \mathfrak{B} , but not $\exists^{\geq 3}B(x)$!

Finite model theory and logics for AI

Grégoire Fournier

GNNs, WL and Counting Logic

Ehrenfeucht-Fraisse games

EF game for formula size on counting logic

Succinctness

References

Finite model theory