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Abstract
Graph neural networks (GNNs) have been widely
used in various domains such as social networks,
molecular biology, or recommendation systems.
Concurrently, different explanations methods of
GNNs have arisen to complement its black-box
nature. Explanations of the GNNs’ predictions
can be categorized into two types—factual and
counterfactual. Given a GNN trained on binary
classification into “accept” and “reject” classes, a
global counterfactual explanation consists in gen-
erating a small set of “accept” graphs relevant to
all of the input “reject” graphs. The transforma-
tion of a “reject” graph into an “accept” graph is
called a recourse. A common recourse explana-
tion is a small set of recourse, from which every
“reject” graph can be turned into an “accept” graph.
Although local counterfactual explanations have
been studied extensively, the problem of finding
common recourse for global counterfactual expla-
nation remains unexplored, particularly for GNNs.
In this paper, we formalize the common recourse
explanation problem, and design an effective algo-
rithm, COMRECGC, to solve it. We benchmark
our algorithm against strong baselines on four dif-
ferent real-world graphs datasets and demonstrate
the superior performance of COMRECGC against
the competitors. We also compare the common
recourse explanations to the graph counterfactual
explanation, showing that common recourse ex-
planations are either comparable or superior, mak-
ing them worth considering for applications such
as drug discovery or computational biology.

1. Introduction
Graph Neural Networks (GNNs) have been widely used for
graph classification across various domains such as elec-
trical design (Mirhoseini et al., 2020), physical simulation
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(Bhattoo et al., 2022), or drug discovery (Jiang et al., 2020;
Cao et al., 2016; Hamilton et al., 2017). Despite their popu-
larity and their good performance, the predictions of GNNs
are not yet fully understood, and explaining GNN’s behav-
ior has become a central focus of recent research efforts
(Kakkad et al., 2023) (Yuan et al., 2022). Our work focuses
on the concept of Counterfactual Explanation (CE) in the
context of binary classification (e.g., ‘reject’ vs. ‘accept’
classes). This involves designing the minimal changes re-
quired in each ‘reject’, or undesirable graph, to be able to
change to an ‘accept’ graph, or counterfactual graph, that is
often similar in structure. A global CE, in particular, aims to
identify a small set of ‘accept’ graphs relevant to all ‘reject’
graphs, thereby providing insights into the critical decision
regions recognized by the base GNN model. This global
explanation approach highlights the GNN’s model-level be-
havior as opposed to an instance level or local one.

Another important aspect of CE explanations is the implicit
provision of recourse—graph transformations that convert
a ‘reject’ graph into an ‘accept’ graph (Verma et al., 2022;
Karimi et al., 2020). This is particularly valuable in applica-
tions where it is possible to take action to reverse a decision,
such as in loan applications or in modifying a compound to
change physical or chemical properties of molecules (e.g.,
mutagenicity (Riesen & Bunke, 2008)).

The instance-specific or local counterfactual explanations
are insightful and capable of providing recourse for each
instance (Abrate & Bonchi, 2021; Bajaj et al., 2021; Lucic
et al., 2022; Tanyel et al., 2023). However, the explanations
generated are generally large in number and not straight-
forward to interpret at the model level. Global counterfac-
tual explainers have been proposed to address these issues
(Huang et al., 2023; Ley et al., 2023). We present additional
related work in Appendix A. In (Huang et al., 2023), the
authors build global counterfactuals for GNNs. However,
a major limitation of their approach is its generalizability
when considering recourse. A single counterfactual can lead
to significantly different recourse depending on the specific
graph it explains, making it unsuitable as a local explana-
tion. In (Ley et al., 2023), a list of recourse directions is
determined by experts, which the algorithm then uses to
create a global explanation. This approach has two main
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weaknesses—first, it relies on experts to provide a compre-
hensive set of recourse directions; second, it separates the
process of finding recourse directions from that of fitting
them to the data, which may compromise robustness and op-
timality. Moreover, the latter method has not been utilized
for graph data.

To answer these shortcomings, our work considers the prob-
lem of finding common recourse (FCR) explanation, which
seeks to generate a small set of recourse that is capable
of converting every ’reject’ instance into an ’accept’. This
essentially means that one or more graphs use the same
recourse to achieve a counterfactual. To the best of our
knowledge, this problem has not been studied before from a
graph machine learning perspective. FCR offers both high-
level interpretability and instance level insights. Moreover,
in some cases, more input graphs can be explained with
fewer common recourse compared to global counterfactuals.
Our main contributions are the following:

• Novel problem setting. We formalize the FCR prob-
lem. We prove that the FCR problem is NP-hard. We
provide a generalized version of the FCR problem,
called FC (Finding Counterfactual) and derive an ap-
proximation algorithm to a constrained version of FC.

• COMRECGC. We design the COMRECGC algorithm
to extract high quality common recourse as an explana-
tion, which provides a solution to both problems.

• Experiments. We experiment on real world datasets
and benchmark our algorithm against popular coun-
terfactual explainers on the Common recourse task.
COMRECGC outperforms the next best solution on
the FCR problem by more than 20%, 30%, 20%, and
10% in total coverage on the NCI1, MUTAGENICITY,
AIDS, and PROTEINS datasets respectively. We show
that COMRECGC common recourse explanation offer
a comparable and sometimes higher coverage than the
best baseline global counterfactual explanation.

2. Background and Problem Formulation
Counterfactual Explanation. A graph is defined as G =
(V,E), where V is the set of vertices and E the set of edges.
Consider a binary graph classification model—such as a
GNN—where the prediction function is be denoted by Φ.
A graph is predicted in the ‘reject’ class if Φ(G) = 0 and
in the ‘accept’ class if Φ(G) = 1. For any reject graph
G, we call a graph H counterfactual if Φ(H) = 1 and
d(G,H) ≤ θ, where θ is a given normalized distance value
such that 0 < θ < 1 and d is a distance function. In
other words, we say H covers G. In the rest of the paper,
we consider our input to be solely constituted of reject or
‘undesirable’ graphs, denoted by G, and we denote by C(G)
the set of counterfactual graphs that cover G.

Common Recourse. Given a reject graph G covered by
H , we call recourse a transformation (a function, r) which
converts G into H . Note that the cost of the recourse is
the distance between G and H . While defining a common
recourse, an obvious question is how to define it on dif-
ferent graphs. For instance, if the recourse is ‘adding’ a
vertex connected to some specific vertices that do not exist
in different graphs, it will lead to some sort of ambiguity.
However, a GNN always gives a latent representation (em-
bedding). Thus, we use graph embedding z from the space
of graphs into Rl for some constant l to define common
recourse. Note that these embeddings also can be used to
measure the distance between two graphs such as graph edit
distance (Ranjan et al., 2023).

Suppose H covers G, and let r be the recourse that turns G
into H (i.e., r(G) = H), then we define the embedding of
r in the space of vectors of Rl to be r⃗, the vector from z(G)

to z(H), i.e.,
−−−−−−→
z(G)z(H). Given two recourse r1, r2, we say

that they form a common recourse if there exists v⃗, a vector
in Rl, such that ||v⃗ − r⃗1||2 ≤ ∆ and ||v⃗ − r⃗2||2 ≤ ∆, for
a fixed 0 < ∆ < 1. The idea is that there exists a center
recourse which is close to both recourse and can be used as
a summary.

Please refer to the Appendix for the proofs of the claims and
Theorems.

2.1. The Problem of Common Recourse

Our goal is to have a small representative set of common
recourse, F, and the cost of these should be small. Before
formalizing our problem, we define the followings:

• COVERAGE(F) :=
∣∣{G ∈ G|∃H ∈ C(G),∃r ∈ F

such that ||r⃗ −
−−−−−−→
z(G)z(H)||2 ≤ ∆}

∣∣/|G|; the fraction
of the input graphs for which at least one counterfactual
is obtained through one of the recourse in F. Note that
the center recourse are being chosen from F.

• cost(F) := AGGG∈G{min{ ||r⃗||2, r ∈ F and ∃H ∈
C(G) such that ||r⃗ −

−−−−−−→
z(G)z(H)||2 ≤ ∆}}; the total

distance from the covered input graphs to their closest
attained counterfactual through F. The AGG function
used in the experiments is the summation.

• size(F) := |F|.

Problem 1 (Finding Common Recourse (FCR)). Given
input graphs G and a budget R, the goal is to find a set of
recourse of size R that maximizes the coverage:

maxF coverage(F) such that size(F) ≤ R.

Recourse are derived from the nearby counterfactual graphs.
For a set of counterfactuals H, we define its associated
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recourse set as FH := {
−−−−−−→
z(G)z(H)| G ∈ G, H ∈ H∩C(G)}.

Subsequently, another way to formalize the problem would
be to look at the common recourse that can be extracted
from a set of counterfactuals.

Problem 2 (Finding Counterfactual (FC)). Given input
graph G and two budgets R and T , the goal is to find a
set of counterfactuals H such that its associated common
recourse set has size R:

maxH coverage(F∗
H) s.t. size(F∗

H) ≤ R, size(H) ≤ T,

where F∗
H denotes the common recourse set that achieves

the maximum coverage from selecting R recourse of FH.

Note that the FCR problem is a specific case of the FC
problem by setting T to |G|, the number of input graphs to
cover. The FC problem corresponds to a max multi-budget
multi-cover problem, where we have separate budgets for
counterfactuals and for recourse. To count an input graph
as covered, it must be covered by both of these budgets.

Although cost is not a constraint nor an objective in both the
FCR and FC problems, it remains, alongside coverage, a
valuable metric for assessing the relevance of counterfactual
explanations (Rawal & Lakkaraju, 2020), and by extension,
the recourse explanations derived from them.

2.2. Analysis: The FCR problem

The FCR problem (Problem 1) consists in finding the best
common recourse set of size R in terms of coverage from
a list of common recourse. Let us define f as the function
that associates to a set of common recourse the maximum
coverage obtained by selecting R of them.

Theorem 1. The FCR problem is NP-hard. (Appendix B.1)

We claim that f is monotone and submodular (Appendix
B.2), hence the common greedy algorithm yields a (1−1/e)
approximation, which is the best poly-time approximation
unless P=NP (Feige, 1998).

2.3. Analysis of the FC problem

The FC problem (see Problem 2) is an extension of the
FCR problem where we are no longer given the full com-
mon recourse set, and we are required to pick at most T
counterfactuals to form R recourse for best coverage. In Ap-
pendix B.3, we present a budget version of the FC problem.

Let g be the function that associates to a set of counterfac-
tuals, its best coverage through building common recourse
and selecting the R best for maximum coverage. It is not
hard to see that g is monotone, and does not possess any
local submodularity ratio (Santiago & Yoshida, 2020).

Theorem 2. g is not pseudo-modular. (Appendix B.4)

2.3.1. APPROXIMATION FOR THE FC PROBLEM

Since the function g is monotone but not-pseudo modular
(Theorem 2), finding an approximation algorithm with some
guarantees is non trivial. To make the problem tractable for
approximation, we add the following constraint:
Constraint 1: (C1) To be considered as valid solution, a set
of T counterfactuals, G1. . . . GT must verify:

∀p < T, g(
⋃

i≤p+1

Gi)− g(
⋃
i≤p

Gi) > 0. (1)

Intuitively, this means that there exists a “series” (in the
union of sets sense) of counterfactual that increases the
objective function at each step. Such a constraint does not
seem too abstract, as most approximation algorithms look
to add one element at a time. We obtain the following:

Theorem 3. There is a 1− e−1/R approximation algorithm
in expectation for the FC problem with C1. (Appendix B.5)

Discussions. The above theoretical results have important
implications: (1) FCR problem: The (1 − 1/e) approxi-
mation guarantee of the greedy algorithm is for selecting
the best common recourse once the counterfactuals have
been found. It is featured in our method for solving the
FCR problem. (2) FC problem: The 1− e−1/R approxi-
mation for the FC problem might be less useful in practice,
as typically we want to allow numerous (R ≈ 100) recourse
to explain a dataset. Though the corresponding random-
ized greedy algorithm provides the guarantee, instead of
using this algorithm, we will assess the importance of each
counterfactual with its number of visits through a “common
recourse random walk”.

3. Our Method: COMRECGC
To find good counterfactual for common recourse, COM-
RECGC operates in different stages.

• A graph embedding algorithm: First, COMRECGC
maps each graph from the set of input graphs into Rl,
an embedding space. From the representation of an
input graph and one of its counterfactual, we derive the
recourse embedding.

• COMRECGC finds counterfactuals for common re-
course through a multi-head vertex reinforced ran-
dom walk in the graph edit space. This is a variation
of a vertex reinforced random walk (Pemantle, 2004).

• A clustering algorithm for common recourse: we
form clusters over the embeddings of the generated
recourse. Each cluster of a certain radius (∆) corre-
sponds to a common recourse. Finally, we aggregate
the common recourse greedily to obtain the maximum
coverage.
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3.1. Graph embedding algorithm

One of the essential notions to define counterfactual is the
distance function as described earlier. Our method COM-
RECGC begins with the efficient computation of distance
(or similarity) between two graphs. To assess distance be-
tween graphs, we use the graph edit distance (GED) (San-
feliu & Fu, 1983) that accounts for the minimal number of
transformations—such as edge/vertex deletion/addition and
label change—to make the graphs isomorphic. For a graph
G, we denote N (G) as the neighbor set of graphs that are
only one edit distance away from G. We use the normal-
ized GED distance ĜED(G1, G2) = GED(G1, G2)/(|V1|+
|V2| + |E1| + |E2|) for our framework, which has the ad-
vantage to compare two graphs of different sizes.

Since the GED is NP-hard to compute, we use a graph
embedding algorithm GREED from (Ranjan et al., 2023)
as a proxy, which aims to learn a GED metric through a
projection of the graph dataset in Rl. Note that it is possible
to employ any other embedding algorithm that can estimate
the GED between two graphs, which allows us to validate
the closeness of counterfactuals, and to define common
recourse on the space of graph through vectors in Rl. We
denote as z(G) the embedding of a graph G in the rest of
the paper.

3.2. Multi-head vertex reinforced random walk

To identify counterfactuals, we explore the graph edit map
through a random walk. The random walk occurs in
the space of graphs, where each state is a distinct (non-
isomorphic) graph. Two states are connected if and only
if their corresponding graphs can be transformed into one
another by a single edit.

COMRECGC uses a variation of a vertex reinforced random
walk (VRRW). VRRW (Pemantle, 2004) performs random
walks on a finite state space where the transition probability
depends on the number of visits. This family of random walk
has the advantage of experimentally converging, as well as
providing an interpretation of the diversity and exploration
performances (Mei et al., 2010). We now describe how
COMRECGC uses random walks:

Initially, the random walk begins with k-heads each placed
on different input graphs randomly, (Gi)i≤k ⊂ G. At each
step, we either continue the walk or, with a small probability,
all heads teleport back to starting graphs. It is crucial for
our walk to keep track of the graph from which each head
started or was teleported to. We represent the state of the
k-heads random walk as (ui)i≤k.

In each step, we randomly select one of the heads as the
lead, denoted by the index ℓ, then proceed as follows:

• First, we move the lead head. The goal for the walker

is to go towards a potential counterfactual graph with
the following transition rule, for v ∈ N (uℓ):

p(uℓ, v) ∝ pϕ(v)C(v) (2)

Where C(v) is one plus the number of visits to graph
v, and pϕ(v) is the probability, assigned by the GNN,
of v being a counterfactual.

• Each non-lead head moves to the next state based
on the recourse available among its neighbors that is
closest to the lead’s recourse. More formally, if the
lead head is in state uℓ after the previous step, then the
next state for the i-th head is:

argminv∈N (ui)∪{ui}||
−−−−−−−→
z(Gℓ)z(uℓ)−

−−−−−−→
z(Gi)z(v) ||2

Teleportation. The graph edit space is exponentially large.
Thus, to explore the search space around small neighbor-
hoods of the input graphs, we restrict the random walk
by adding a probability of returning to input graphs of
0 < τ < 1 at each step. We call this operation telepor-
tation, and each head state is reset to one of the input graphs
optimizing for coverage as follows: define t(G) be the
number of walks started from the input graph G. Then the
probability of a head to teleport to G ∈ G is:

pτ (G) =
exp(−t(G))

ΣG′∈G exp(−t(G′))
(3)

The pseudo code of the random walk procedure and some
elements of analysis are presented in the Appendix (C.1 and
C.2).

Counterfactual Candidates. After M steps, the random
walk is terminated. For the next phase, we select the coun-
terfactuals that have been visited at least a certain number
of times, referring to these as the counterfactual candidates
that represent the outcomes of the walk.

3.3. Aggregation with clustering

Once counterfactuals have been found, COMRECGC forms
clusters among the resulting recourse to find common re-
course. For this task, we use a spatial clustering, DBSCAN
(Ester et al., 1996) to find high density areas to aggregate
recourse with close embedding representation. We associate
a common recourse to each cluster of radius ∆. Finally
we pick R common recourse to be our explanation using
a greedy approach. The algorithm on the set G of input
graphs, with the set of counterfactuals S is given below.
Here gain(r;F) is the gain in coverage from adding the
recourse r to F.
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Algorithm 1 CR CLUSTERING(G, S, R)

1: C←∆-clusterize {
−−−−−−→
z(G)z(v) : v ∈ S, G ∈ G}

2: F← ∅
3: for i ∈ 1 : R do
4: r ← argmaxr∈C gain(r;F)
5: F← F+ {r}
6: end for
7: return F

3.4. COMRECGC: algorithm and complexity

Finally we present COMRECGC’s solution to the FCR prob-
lem, which consists in a Multi-head VRRW, a selection
of counterfactual candidates for recourse, and a clustering
process for identifying common recourse. The final COM-
RECGC algorithm is given below. Line 2 is the filtering
based on the number of visits, where n is a threshold set as
a hyper-parameter for the dataset.

Algorithm 2 COMRECGC(ϕ, G, k, M , τ , R, n)
1: S← MULTI-HEAD VRRW(ϕ, G, k, M , τ )
2: S← top n frequently visited counterfactuals in S
3: return CR CLUSTERING(G, S, R)

Complexity Analysis. The complexity of the random walk
is O(Mhk), where M is the number of steps in the VRRW,
k is the number of heads in the VRRW, and h is the maxi-
mum node degree in the graph-edit space map. The com-
plexity of using DBSCAN clustering on n|G| recourse is
O(n2|G|2), where n is the number of top-visited counter-
factuals, and |G| is the number of input graphs. In practice,
we have a small constant due to being in Rl for l = 64.
Finally, the complexity of the greedy summary of n|G| re-
course over |G| features R times is O(nR|G|2), where R
is the size of the recourse set. The overall complexity is
O(Mhk + n2|G|2).

3.5. Variation of COMRECGC for the FC problem

Our goal is to solve a generic framework to solve both FCR
and FC problem. Note that we can also use COMRECGC to
generate solution to the FC problem. In the counterfactual
candidates step, we need to significantly reduce the number
of counterfactuals that we use to generate common recourse
to match the constraints in FC. COMRECGC selects the
counterfactuals that are closest to the input graphs, intu-
itively this is because the common recourse threshold ∆
is geometrically tight, so we want recourse (cost) to be as
small as possible to increase the chance of getting common
ones in the clustering step. Algorithm 3 represents COM-
RECGC’s solution to the FC problem. Line 3 is the specific
to the FC framework. In particular, we select T = |G|
counterfactuals. This allows our method to be compared
to the existing local explainers where one counterfactual is

given per input graph (Ying et al., 2019). The complexity of
this extra step is O(n|G|), hence COMRECGC’s solution to
the FC problem has a complexity of O(Mhk + n2|G|2).

Algorithm 3 COMRECGC for FC (ϕ, G, k, M , R)
1: S← MULTI-HEAD VRRW(ϕ, G, k, M )
2: S← top n frequently visited counterfactuals in S
3: S←

⋃
G∈G argminv∈S ||

−−−−−−→
z(G)z(v)||2

4: return CR CLUSTERING(G, S, R)

4. Experiments
We evaluate COMRECGC on four real-world datasets
against the recourse from benchmark explainers, and show:

• COMRECGC produces global common recourse that
are of higher quality than those of the baselines on both
the FCR and FC problems.

• The explanations produced by COMRECGC are signif-
icantly less costly in terms of recourse than the ones
generated by the baseline counterfactual explainers.

• The common recourse from COMRECGC can explain
a similar, and in some cases higher, number of input
graphs compared to the counterfactual graphs gener-
ated by a global counterfactual explainer.

Reproducibility. We have made our code available at
this anonymous link: https://anonymous.4open.
science/r/COMRECGC-3E4E/.

4.1. Datasets

We consider the datasets MUTAGENICITY (Riesen & Bunke,
2008; Kazius et al., 2005), NCI1 (Wale & Karypis, 2006),
AIDS (Riesen & Bunke, 2008), and PROTEINS (Borgwardt
et al., 2005; Dobson & Doig, 2003). In the first three, each
graph accounts for a molecule, where nodes represent atoms
and edges chemical bonds between them. The molecules are
classified by whether they are mutagenic, anticancer, and
active against HIV, respectively. The PROTEINS dataset is
composed of different proteins classified into enzymes and
non-enzymes, with nodes representing secondary structure
elements and edges representing structural proximity. For
each dataset, we remove graphs containing rare nodes (with
a label count less than 50). The statistics of the datasets are
detailed in Table 1.

4.2. Experimental set up

We train a base GNN model (GCN) (Kipf & Welling, 2017)
for a binary classification task, consisting of three convo-
lutional layers, a max pooling layer, and a fully connected
layer, following best practices from the literature (Vu &
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Table 1. Datasets overview.
NCI1 MUTAGENICITY AIDS PROTEINS

#Graphs 3978 4308 1837 1113
#Nodes 118714 130719 28905 43471
#Edges 128663 132707 29985 81044

#Node Labels 10 10 9 3

Thai, 2020). The model is trained with the Adam opti-
mizer (Kingma & Ba, 2014) and a learning rate of 0.001
for 1000 epochs. The training/validation/testing split is
80%/10%/10%, and the corresponding accuracy measures
are presented in Table 2.

Table 2. Accuracy of GCN on the graph binary classification task
on NCI1, MUTAGENICITY, AIDS and PROTEINS.

NCI1 MUTAGENICITY AIDS PROTEINS

Training 0.844 0.882 0.998 0.780
Validation 0.816 0.830 0.973 0.820

Testing 0.781 0.800 0.978 0.730

Choice of the parameters θ and ∆. The parameter θ ac-
counts for the distance to a graph G ∈ G within which a
graph with an accepted prediction can be used as a coun-
terfactual explanation for G. There is a trade-off: a small
θ provides instance-wise explanations, if they exist, and a
larger θ allow for more effective summaries, as counterfactu-
als tend to cover a broader range of input graphs. Following
(Huang et al., 2023), we set θ = 0.1 in the experiments on
the NCI1, MUTAGENICITY and AIDS datasets. However,
we set θ = 0.15 for the PROTEINS dataset, as we have found
experimentally that counterfactuals tend to be more distant
from their input graphs.

On the other hand, the parameter ∆ accounts for the max-
imum difference between two recourse to be considered
common. A larger ∆ yields better summaries but the in-
sights become less precise. We set ∆ = 0.02, although
this may seem large compared to the value of θ, the em-
bedding space dimension used for the datasets is l = 64,
making the margin for common recourse sensibly smaller
than the one for finding counterfactuals, as expected. An
example illustrating a common recourse explanation with
those parameters is provided in Figure 1.

COMRECGC parameters. Across all of our experiments,
COMRECGC uses k = 5 heads, has probability of telepor-
tation τ = 0.05, performs the random walk for M = 50000
steps and selects R = 100 common recourse.

4.3. Results for the FCR problem

Baselines. Since the FCR problem does not constrain the
number of counterfactuals used to generate common re-
course, explainers used for benchmarking this problem must

be able to generate a large number of counterfactuals. In
the literature, we find that only GCFEXPLAINER(Huang
et al., 2023) aims at generating global counterfactuals on a
large scale. This is also the only global method to generate
counterfactual. To generate common recourse with GCFEX-
PLAINER counterfactuals, we use the same recourse cluster-
ing algorithm (Algorithm 1) that is part of COMRECGC. For
COMRECGC, its number of heads variants, and GCFEX-
PLAINER, we limit the number of counterfactuals entering
the clustering stage to 100, 000 graphs.

Results. The results are presented in Table 3. We observe
that the common recourse explanation from COMRECGC
yield better coverage by a significant margin on all datasets,
thus providing a better solution for the FCR problem than
the baselines. The cost of the common recourse is also
lower on the NCI1, MUTAGENICITY datasets, comparable
on the AIDS dataset, and slightly above on the PROTEINS
dataset. This difference in coverage is explained by the
multi-head random walk used to generate counterfactuals
in COMRECGC, that tends to facilitate forming common
recourse afterwards. The lower cost is also explained by the
fact that finding common recourse with similarity threshold
∆ = 0.02 is difficult, and is easier on small recourse than
on larger ones.

4.4. Results for the FC problem

Baselines. The FC problem constraints the number of coun-
terfactual used to form common recourse, which allows
use to compare our method to common local counterfac-
tual explainers. To evaluate the performance of our method
compared to baselines, we construct a common recourse
explanation for a counterfactual explainer as follows: a
counterfactuals explainer takes the set of input graphs G
and returns a set S of counterfactuals of the same cardinal-
ity. We form clusters on S using Algorithm 1 to generate a
common recourse explanation. The baseline counterfactual
explainers are GCFEXPLAINER and a local random walk
explainer. The second one performs a random walk around
each input graphs to find close counterfactuals, we select the
closest counterfactual to each input graph to be part of the
set of counterfactuals candidates used to generate recourse.
We have not used explainers such as CFF EXPLAINER (Ba-
jaj et al., 2021), RCEXPLAINER (Tan et al., 2022), as they
mainly focus on local explanation and GCFEXPLAINER
already out performs these methods (Huang et al., 2023).
They also only generate smaller subgraphs counterfactual
explanation, whereas a random walk can also adds elements
to graph to find counterfactuals. Finally we also add a
baseline that corresponds to Algorithm 1 processing the
counterfactual graphs given in the original dataset.

Results. Table 4 presents the outcome. We show more
detailed result for different number of recourse in Figure 2.
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Table 3. Results on the FCR problem. Higher coverage corresponds to generating common recourse that is shared by more input graphs.
The cost (lower is better) refers to the total length of the recourse. COMRECGC and its variants outperforms the baseline almost in all
settings.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GCFEXPLAINER 21.4% 5.75 20.6% 6.91 14.2% 6.97 32.8% 10.65
COMRECGC 2-HEAD 40.5% 5.12 45.9% 5.74 32.8% 6.71 45.9% 11.44
COMRECGC 3-HEAD 44.5% 5.07 52.6% 5.61 33.6% 6.62 45.9% 11.51
COMRECGC 4-HEAD 44.6% 4.70 52.0% 5.81 34.8% 6.71 46.2% 11.47
COMRECGC 5-HEAD 42.9% 4.95 51.8% 5.63 34.7% 6.74 46.4% 11.59
COMRECGC 6-HEAD 44.9% 4.51 52.0% 5.68 35.2% 6.66 47.3% 11.59

Table 4. Results on the FC problem. Higher coverage and lower cost are desirable. COMRECGC performs better than the baselines on all
datasets and metrics except for the cost on the AIDS and PROTEINS datasets.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

DATASET COUNTERFACTUALS 8.52% 9.02 10.4% 8.34 0.41% 0.97 29.0% 12.95
LOCALRWEXPLAINER 19.0% 5.89 18.2% 7.19 12.9% 7.31 22.1% 11.33

GCFEXPLAINER 14.7% 7.12 11.9% 7.80 14.2% 7.07 29.8% 11.13
COMRECGC 33.4% 5.60 46.7% 6.56 24.3% 6.59 39.6% 12.04

Figure 1. Common Recourse on MUTAGENICITY: Removing an
NO2 complex. On the left two mutagenetic molecules from the
input, on the right two resulting non-mutagenetic molecules.

We observe that COMRECGC generates the best coverage
compared to all the baselines on the FC problem across all
datasets. The cost of the common recourse is also lower
than the recourse from other method, except on the Pro-
teins dataset where they are comparable. The low cost of
the dataset counterfactuals common recourse for the AIDS
dataset is explained by the low number of common recourse
formed, as few θ-close counterfactuals are in the dataset.

This difference in coverage is even more striking in the FC
problem than in the FCR problem. When the number of
counterfactual is reduced from 100, 000 to 2000, mostly
close counterfactuals are grouped together, this is why the
local RW explainer performances are better than the GCF-
EXPLAINER global counterfactual for forming common
recourse on the NCI1 and MUTAGENICITY datasets.

4.5. Common recourse explanations vs global
counterfactual explanations

Lastly, we compare common recourse explanations and
global counterfactual explanations in terms of coverage.
Since COMRECGC is the only method designed to ex-
plain through common recourse, we will compare the com-
mon recourse explanation generated by COMRECGC to
the global graph counterfactuals generated by GCFEX-
PLAINER(Huang et al., 2023), CFF EXPLAINER (Bajaj et al.,
2021) and RCEXPLAINER (Tan et al., 2022). We also add
the global graph counterfactual explanation generated by
the counterfactual given in the dataset.

For the definition of coverage for a set of counterfactual
graph (S), we refer to (Huang et al., 2023), and define it as
the ratio of the input graphs covered by at least one coun-
terfactual in S. More formally COVERAGE(S) :=

∣∣{G ∈
G|minS∈S||z(G)− z(S)||2 ≤ θ}

∣∣/|G|.

The results, shown in table 5 for 10 explanations, indi-
cate that the common recourse explanations from COM-
RECGC are comparable to the best graph counterfactual
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Table 5. Common recourse explanation vs global counterfactual explanation for 10 explanations. COMRECGC’s common recourse
explanations outperform the baselines’ graph counterfactual explanations on most of the datasets.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Coverage Coverage Coverage

DATASET COUNTERFACTUALS 16.5% 29.0% 0.4% 8.5%
RCEXPLAINER 15.2% 32.0% 9.0% 8.7%

CFF 17.6% 30.4% 3.4% 3.8%
GCFEXPLAINER 27.9% 37.1% 14.7% 10.9%

COMRECGC 26.1% 39.4% 15.2% 18.0%

Figure 2. Common Recourse coverage and cost comparison between COMRECGC and baselines for the FC problem where ∆ =
0.02, T = |G| and R = 1 to 100 common recourse.

method, GCFEXPLAINER, on the NCI1, MUTAGENICITY,
and AIDS datasets, while being significantly more com-
prehensive on the PROTEINS dataset. This difference may
be due to the sparsity of the Proteins dataset, which makes
it challenging to identify a central counterfactual graph to
explain the sparse neighborhood. Common recourse seems
to be a more suitable explanation for this dataset, at least
under the conditions of our experiments.

4.6. Discussions

We make a few observations including a few limitations
of COMRECGC. First, since the FCR and FC problems
are novel, our method is the only one specifically designed
to generate common recourse. It is therefore unsurprising
that we outperform the existing counterfactual explainers.
Second, determining the appropriate parameters θ and ∆ for
the FCR problem is challenging and application dependent.
Since these parameters serve as thresholds for a normalized
distance, larger graphs generally work well with smaller
values of θ and ∆, while smaller graphs require larger val-
ues. Third, we believe that relaxing the values of θ and ∆
could lead to richer and more diverse explanations. How-
ever, as more common recourse would be generated in that

process, we need an appropriate filtering system to select
the most meaningful ones. Fourth, we explore the graph
edit map without considering the physical feasibility of the
changes, especially if the domain has specific constraints
(e.g., chemical bonds in molecules). As a result, the gener-
ated counterfactual graphs may not correspond to real-world
entities.

We discuss the choice of the random walk parameters in
Appendix D.1 and bring additional results for different val-
ues of θ and ∆ in Appendix D.2. We present the running
time of COMRECGC in Appendix D.3, an ablation study in
Appendix D.4 and other examples of common recourse in
Appendix D.5.

5. Conclusion
In this work, we have formalized the problem of generating
global counterfactual explanations for GNNs with common
recourse. This novel problem setting includes the FCR
and FC problems. These problems are NP-hard and thus,
we have designed COMRECGC, a method specifically tai-
lored to extract high-quality common recourse explanations.
Through extensive experiments on real-world datasets, we
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have benchmarked COMRECGC against popular counter-
factual explainers in the common recourse task. Our results
demonstrate that COMRECGC produces global common
recourse of significantly higher quality than the baselines
across both the FCR and FC problems. Finally, COM-
RECGC’s common recourse explanations can account for a
similar number of input graphs as those generated by global
counterfactual explainers, providing a robust and scalable
alternative to global graph counterfactual explanation.
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6. Impact Statement
This paper presents work to advance the field of explain-
able Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Additional Related Work
We summarize recent approaches for counterfactual explanations. (Abrate et al., 2023) propose counterfactual explanations
by sparsifying and densifying graphs, to find counterfactuals through pattern deletion or generation. ARES (Rawal &
Lakkaraju, 2020) produce actionable two level recourse summaries on non-graphical datasets through an optimization
problem. Lastly, in (Magister et al., 2021) the “Human-in-the-Loop” framework integrates human feedback to enhance the
relevance and interpretability of counterfactual explanations.

B. Additional Proofs and Analyses for Section 2
B.1. Proof of Theorem 1

Proof. We prove that the FCR problem is NP-Hard through a reduction from the maximum coverage problem. Consider the
problem of covering U using the sets (Si)i, we build the following instance of the FCR problem:
Let X be a graph binary classifier that accepts a graph if and only if the graph has two nodes of the same color. To each
uj ∈ U , we associate Gj , a star graph with an unlabelled central node and m peripheral vertices. If uj is in k elements of S,
we one-color k peripheral vertices with the colors {i : uj ∈ Si}. We define the common recourse ri, for i ≤ m, as follows:
ri colors the middle vertex of a star graph using color i, and we take the corresponding counterfactuals as the inputs to this
FCR problem.
Thus X(Gj) = 0 for all j and X(ri(Gj)) = 1 if and only if uj ∈ Si. Hence from an optimal solution to this FCR problem,
we derive an optimal solution for the maximum coverage problem (U, (Si)i). Therefore FCR is NP-hard.

B.2. Analysis for The FCR problem

Let us define f as the function that associate to a set of common recourse the maximum coverage obtained by selecting R of
them. It is not hard to see that f is monotone, i.e f(F ∪ {r}) ≥ f(F) for every set of recourse F, and recourse r. We recall
the definition of submodularity (Santiago & Yoshida, 2020), a function h is submodular if for any two sets A ⊆ B and for
any element e:

h(A ∪ {e})− h(A) ≥ h(B ∪ {e})− h(B) (4)

It is easy to see that f is submodular. In the rest of the paper, we denote by hA(B) the marginal gain of adding the set B to
A, i.e h(A ∪B)− h(A).

Proof. We give an instance of the FC problem, and two sets A,B such that equation 5 is only true for γA,B = 0, which
means that there is no local pseudo-submodularity bound. Consider the instance of the FC problem where R = 2, T ≥ 4
and (Gi)1≤i≤4 some counterfactual graphs such that they each cover a different input graphs, G1 is part of R1 (recourse 1),
G2 part of R2 (recourse 2), G3, G4 parts of R3 (recourse 3). We set A to {G1, G2} and B to {G3, G4}.
Then gA(G3) = gA(G4) = 0 and gA(B) = 1.

B.3. Budget Version of the FC problem

When we assume that the counterfactuals and recourse are all known, the FC problem becomes a budget problem:
Problem 3 (max 2-budget 2-cover problem). Given two budgets k1 and k2, and two families of sets S1, S2, the goal is to
find S1 ⊂ S1, S2 ⊂ S2 verifying :

maxS1,S2 S1 ∩ S2 st. (S1) ≤ k1 and size(S2) ≤ k2,

where Si =
⋃

S∈Si
S.

To the best of our knowledge, this problem has not been studied. This is a variation of the maximum coverage problem.
The budgeted maximum coverage problem (Khuller et al., 1999) is another budget variation, where only one budget is
considered, there is no constraint about the intersection, but the sets costs and the rewards for covering elements can be set
to be different from 1. The multi-budget maximum coverage problem is another variation between knapsack and maximum
coverage (Cellinese et al., 2021), but there is only one family of set to pick from, and we do not require double coverage.
Another variation of the maximum coverage problem is called multi-coverage (Barman et al., 2019), where covering multiple
times one element raises the objective value.
Another variation is called multi-set multi-cover, uses one budget, and each element must be covered a certain number of
times (Hall & Hochbaum, 1986; Hua et al., 2009; Gorgi et al., 2021).
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B.4. Proof of Theorem 2

A function h is called pseudo-modular if there exists γ ∈ (0, 1] such that for any pair of disjoint sets A,B:∑
e∈B

hA(e) ≥ γhA(B) (5)

Note that this γ is the minimum over all the γA,B , for all sets A,B, where γA,B is a specific value of γ for given A,B in
equation 5. We now proceed to the proof of Theorem 2:

Proof. We give an instance of the FC problem, and two sets A,B such that equation 5 is only true for γA,B = 0, which
means that there is no local pseudo-submodularity bound. Consider the instance of the FC problem where R = 2, T ≥ 4
and (Gi)1≤i≤4 some counterfactual graphs such that they each cover a different input graphs, G1 is part of R1 (recourse 1),
G2 part of R2 (recourse 2), G3, G4 parts of R3 (recourse 3). We set A to {G1, G2} and B to {G3, G4}.
Then gA(G3) = gA(G4) = 0 and gA(B) = 1.

B.5. Proof of Theorem 3

We first prove that g, the optimization function for the FC problem with the added constraint C1, is pseudo-modular.

Proof. For every set A, and for every graph e in the problem space we have that R ≥ gA(e) by problem definition, we also
have that gA(e) > 0 by C1. So for two disjoint sets A,B part of the solution :∑

e∈B

gA(e) ≥
1

R|B|
gA(B).

Hence g is pseudo-modular.

The pseudo code of the Greedy algorithm for the FC problem with C1 is as follows, where g denotes the function that
associates to a set of counterfactual its best coverage through building common recourse and selecting the R best for
coverage, and T is the maximum number of counterfactuals to use for the explanations.

Algorithm 4 GREEDY FC(g, T )
1: Initialize the set of counterfactuals: S0 ← ∅
2: for i ∈ 1 : T do
3: Let Mi ⊆ E \ Si−1 be a subset of size T maximizing

∑
e∈Mi

gSi−1(e)
4: Let ei be an element uniformly chosen at random of Mi

5: Si ← Si−1 + ei
6: end for
7: return ST

This algorithm was first introduced in the work of (Buchbinder et al., 2014). Applying Theorem 1.10 of (Santiago &
Yoshida, 2020) to the monotone and pseudo-modular function g (Theorem 3), shows that Algorithm 4 yields a 1− e−1/R

approximation in expectation to the FC problem, where R is the maximum number of common recourse of the FC problem.
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C. Detail of our method, COMRECGC for Section 3
C.1. The Pseudocode of MULTI-HEAD VRRW

The pseudo code for our multi-head VRRW is as follows, where Gi denotes the input graph where the random walk started
or was last teleported for the i-th head, and Hi denotes the current graph head i is occupying:

Algorithm 5 MULTI-HEAD VRRW(ϕ, G, k, M , τ )
1: (G1, . . . , Gk)← random input graph from G, S = ∅
2: (H1, . . . , Hk)← (G1, . . . , Gk)
3: for t ∈ 1 : M do
4: Let ϵ, ℓ ∼ Bernoulli(τ), U{1, . . . k}
5: if ϵ = 0 then
6: for v ∈ N (Hℓ) do
7: Compute P (Hℓ, v) based on equation 2.
8: end for
9: vℓ ← random neighbor of Hℓ based on p(Hℓ, v)

10: for i ∈ 1 : k, i ̸= ℓ do
11: vj ← argminv∈N (ui)||

−−−−−−−→
z(Gℓ)z(uℓ)−

−−−−−−→
z(Gi)z(v) ||2

12: end for
13: else
14: (G1, . . . , Gk)← random input graphs from G based on equation 3.
15: (v1, . . . , vk)← (G1, . . . , Gk).
16: end if
17: for i ∈ 1 : k do
18: C(vi)← C(v) + 1
19: if ϕ(vi) > 0.5 then
20: S← S+ {vi}
21: end if
22: end for
23: (H1, . . . , Hk)← (v1, . . . , vk).
24: N(H1) = N(H1) + 1, . . . , N(Hk) = N(Hk) + 1.
25: end for
26: return S

Lines 1-2 describe the initialization of the random walk, where S represents the set of counterfactuals we aim to find.
Lines 5-12 outline the regular behavior of the random walk as it moves towards counterfactuals. Lines 13-15 cover the
teleportation process. Finally, lines 17-21 detail the update of the counterfactual set. In line 23, we advance one step in the
random walk, and in line 24, we update the visit count of the graphs reached by the k heads during this step, following the
principles of VRRW. This visit count influences the transition probabilities in Equation 2.

C.2. Analysis of the Random Walks

VRRW. A vertex reinforced random walk is a random process with reinforcement that focuses on the number of visits of
vertices (Pemantle, 2004) (Pemantle, 2007). To the best of our knowledge, theorical guarantees have only been derived
for the special case where the initial transition matrix is symmetric (Volkov, 1999) (Benaı̈m & Tarrès, 2011), which is not
relevant for our application, as we want to identify counterfactuals with the random walk, as described in Equation 2.

RW. Let us consider a classic, non-reinforced, random walk with the following transition rule:

p(uℓ, v) ∝ pϕ(v) (6)

Where pϕ(v) is the probability, assigned by the GNN, of vertex v being a counterfactual, and uniform teleportation:

pτ (G) =
1

|G|
(7)

We refer to (Lovász, 1993) for the theoretical results. The main purpose of the analysis for our application is to determine
the mixing time and mixing rate of our walk, to tune the parameter M , the number of steps. We add to the random walk the
following constraint: the maximum distance of the head from its starting point is at most 3θ/2, to make the space of the

14



COMRECGC Global Graph Counterfactual Explainer through Common Recourse

random walk finite. By Corollary 5.2 in (Lovász, 1993), the mixing rate of the walk is max(|λ2|, |λn|), where λi is the i-th
largest eigenvalue of the matrix D−1/2MrwD

1/2, where Mrw is the transition matrix associated to our random walk and D
is the diagonal matrix with value 1/degree(i).

Unfortunately, there are two main obstacles that make this approach untractable: (1) The search space, the number of nodes
of the graph on which we do the random walk, is of size O(|G|erθ), hence making it hard to extract the eigenvalues of the
matrix Mrw (2) Each node’s transition rule is determined by the GNN’s prediction, making the construction of the matrix
Mrw difficult.

D. Additional Details on Experiments & Results
D.1. Choice of the random walk parameters k,M, τ

The value of parameters k and τ have been chosen through experiments on the Mutagenicity datasets. We chose τ , the
probability of teleport, to have a compromise between being able to look far enough to find counterfactuals, and still be able
to explore a good amount of paths with the random walk. Although higher values of k seem to yield slightly better coverage,
as seen on table 3, k increases the running time, the number of steps for the random walk to converge, and the memory
usage. Hence we decide to limit k to 5 heads and to set M to a relatively low 50, 000 steps.

D.2. Experiments on different values of θ,∆

Setting. We experiment on different values of θ,∆. Those parameters are only used in the clustering algorithm part of
COMRECGC. The results are presented in table 6, for COMRECGC with parameters M = 50, 000, k = 5, τ = 0.05.

Results. We do not run into issues with increasing the value of ∆, the common recourse threshold. As expected, the
coverage goes up, and so does the cost as COMRECGC is able to cover close to the whole of MUTAGENICITY and NCI1
datasets, and follows the same trend for the AIDS dataset. However, it is quite surprising that the coverage on the PROTEINS
dataset went down by 1%. An explanation for this is a possible issue with the clustering algorithm DBScan, which may be
caused by a too big overlap on some common recourse clusters.

Increasing the counterfactual threshold θ is proven to be challenging, as raising it from 0.1 to 0.15 across datasets dramatically
increased the number of recourse entering the clustering stage. For example, on the MUTAGENICITY and NCI1 datasets, the
number of recourse increased by a factor of 100, making DBScan intractable in its current form. As expected, increasing
θ results in greater coverage in the common recourse explanations produced by COMRECGC, but it also raises the cost,
as longer recourse are allowed. In particular, on the AIDS dataset, the increase in coverage was minimal, suggesting a
potential bottleneck in the effectiveness of common recourse explanations for that dataset with common recourse threshold
set at ∆ = 0.02.

Table 6. Results on the FCR problem of COMRECGC for different values of θ and ∆. We find that increasing the common recourse and
counterfactual threshold tend improve coverage, particularly or more dense datasets, such as MUTAGENICITY and NCI1. The effect on
more sparse datasets such as PROTEINS and AIDS is more contrasted, with moderate to no added coverage. The cost rises as we allow
more distant counterfactuals.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

θ = 0.1,∆ = 0.02 42.9% 4.95 51.8% 5.63 34.7% 6.74 42.8% 7.21
θ = 0.1,∆ = 0.04 86.5% 8.05 90.0% 8.11 47.0% 8.4 41.5% 6.36
θ = 0.15,∆ = 0.02 x x x x 34.8% 7.65 46.4% 11.59

D.3. Running time

We show the running time of COMRECGC, its VRRW (Algorithm 5) and Clustering (Algorithm 1) components, for the
FCR problem in the datasets of our study.
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Table 7. The running time in minutes of the different parts of COMRECGC for the experiments of Table 3.
NCI1 MUTAGENICITY AIDS PROTEINS

Algorithm 5 101 172 61 152
Algorithm 1 23 27 14 14

COMRECGC 124 199 75 166

D.4. Ablation Study

We give the performance of the variation of COMRECGC without some of its features on the FCR problem for the datasets
in our study. We find the clustering to be very important on large datasets such as MUTAGENICITY, but less so on the smaller
PROTEINS. This is possibly explained by the ability of the VRRW to spend a longer time pairing the same elements through
different recourse, hence somewhat harmonizing some recourse.

Table 8. Results on the FCR problem of different variations of COMRECGC, in the same parameters setting as Section 4.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

COMRECGC 42.9% 4.95 51.8% 5.63 34.7% 6.74 46.4% 11.59
COMRECGC w/o clustering 10.1% x 8.2% x 13.6% x 33.9% x
COMRECGC w/o multi-head 21.4% 5.75 20.6% 6.91 14.2% 6.97 32.8% 10.65

D.5. Additional examples of common recourse

We provide additional example of common recourse identified through COMRECGC, in the settings θ = 0.1 and ∆ = 0.02.
in Figures 3 and 4.

In Figure 3, we observe larger molecules, which allow for a ’larger recourse’ consisting of three transformations. This is
because transformations on larger molecules correspond to smaller variations in the embedding for the ”same transformation”,
which is capped by ∆.

In Figure 4, on smaller molecules, we observe two types of transformations in the recourse, likely due to the increased value
of the θ parameter compared to Figure 1. Indeed, a larger θ allows for more distant counterfactuals.
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Figure 3. Common Recourse on the MUTAGENICITY dataset: removing two Hydrogen and one Carbon, on the left two mutagenetic input
graphs, on the right two non-mutagenetic graph.

Figure 4. Common Recourse on the MUTAGENICITY dataset: removing one Nitrogen, one Hydrogen, adding one Oxygen and one Carbon,
on the left two mutagenetic input graphs, on the right two non-mutagenetic graph.
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