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1 Notations
Set Z = X × Y the examples domain and H = {hw : w ∈ W} the hypothesis set indexed by
W . A loss function ℓ : H × Z → R+. The training set S = Sn = (Z1, ..., Zn) is constituted
of n iid samples from Z with distribution µ. A proper learning algorithm A picks hW ∈ H
according to PW |S. For any w ∈ W define:

Lµ(w) = E[ℓ(hw, Z)], Z ∼ µ

LS(w) =
1

n

∑
i

ℓ(hw, Zi), Zi ∼ µ

genµ(w) = Lµ(w)− LS(w)

genµ(A) = genµ(PW |S) = E[Lµ(w)− LS(w)]

In the last definition the expectation is taken with regards to PS,W = µ⊗n ⊗ PW |S. Let the
super-sample Z be an 2×n array of i.i.d random variables following µ, U be a sequence of i.i.d.
Bernoulli random variables in {0, 1}, independent from Z, with P(Ui = 0) = P(Ui = 1) = 1/2,
and, for every n ∈ N, let Sn = (ZUj,j)1≤j≤n. For an algorithm A, define the conditional mutual
information of A, denoted CMIµ(A), to be the conditional mutual information I(A(S);U |Z).
Define the distribution-free CMI as CMI(A) = supZI(A(S);S).

2 Presentation of the problem
We are interested in the following conjectures[1]:

Conjecture 1. There is a constant c > 0 such that, for every VC class H, with dimension
d, if there exists a proper learning algorithm with the expected risk no greater than cd/n
for every realizable distribution µ, then there exists a proper learning algorithm An with
CMIµ(An) ≤ cd and E(LSn(An(Sn)) ≤ cd/n for every realizable distribution µ.

Conjecture 2.There is a constant c > 0 such that, for every VC class H, with dimension
d, there exists a (possibly improper) learning algorithm An such that CMID(An) ≤ cd and
E(LSn(An(Sn)) ≤ cd/n for every realizable distribution µ.
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3 Some results for bounded VC-dimension
In this part Y is restricted to {−1, 1}. First we justify why bounded VC-dimension yields
good generalization properties [2]:

Definition 1 (Empirical Rademacher complexity). Let σ be a vector of independent uniform
random variables taking values in {−1, 1}. The empirical Rademacher complexity of H with
respect to the sample S is defined as:

R̂S(H) = Eσ[suph∈H
1

n

n∑
i=1

σih(Zi)]

Theorem 2 (Rademacher complexity bounds – binary classification). Let H be a family of
functions taking values in {−1, 1} and let µ be the distribution over the input space. Then,
for any δ > 0, with probability at least 1 − δ over a sample S = Sn = (Z1, ..., Zn) drawn
according to µ, then for all w ∈ W :

genµ(w) ≤ R̂S(H) + 3

√
log(2

δ
)

2n

When the VC-dimension if finite, we can bound the Rademacher complexity to the fol-
lowing corollary:

Corollary 3. Let H be a family of functions taking values in {−1, 1} with VC-dimension d.
Then, for any δ > 0, with probability at least 1− δ, for all w ∈ W :

genµ(w) ≤
√

2d log( en
d
)

n
+ 3

√
log(2

δ
)

2n

Recently progress has been made regarding the bounding of generalization using CMI, as
avoiding over-fitting intuitively seem linked to low CMI.[3]

Theorem 4 (Generalization from CMI). Let Z = X × {0, 1}, for an algorithm A and S =
Sn = (Z1, ..., Zn):

genµ(A) ≤
√

2 CMIµ(A)

n

Theorem 5 (Bounding CMI). Let Z = X ×{0, 1} and H a hypothesis class with VC dimen-
sion d. Then, there exists an empirical risk minimizer A such that CMI(A) ≤ d logn+ 2.

Note that we only presented upper bounds of the generalization error. It is also possible to
derive lower bounds, using probabilistic method types of arguments.
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4 On the optimal complexity of PAC learning
In this part Y is restricted to {−1, 1}. To better understand the question of information
for good generalisation algorithms, it is useful to mention the optimal complexity of PAC
learning depending on the nature of the algorithm and on the type of problem [4]:

Bounds on the sample complexity of PAC learning

Improper Learning Θ
(
d
ε
+ 1

ε
log1

δ

) Hanneke2016OP[5]
Ehrenfeucht89[6]

Any ERM
O
(
d
ε
log(1

ε
∧ s

d
) + 1

ε
log1

δ

)
Ω
(
d
ε
+ 1

ε
log(1

ε
∧ s

d
) + 1

ε
log1

δ

) Hanneke2016RE[7]
Vapnik74[8]

Proper Learning
O
(

dk2

ε
log(k) + k2

ε
log1

δ

)
Ω
(
d
ε
+ 1

ε
log(k) + 1

ε
log1

δ

) Bousquet20[4]

SVM in Rn Θ
(
n
ε
+ 1

ε
log1

δ

)
Bousquet20[4]

Maximum Class Θ
(
d
ε
+ 1

ε
log1

δ

)
Bousquet20[4]

Table 1: Summary of results on the sample complexity of (ε, δ)-PAC learning. d denotes the
VC dimension, s the star number [9], and k the dual Helly number.

We choose not to develop every bound in the table, but instead focus on the upper bounds
for proper and improper learning. They both rely on a majority classifier. The majority is
composed of ERMs trained on different overlapping subsets. In the case of obtaining the
mentioned improper learning upper bounds, the subsets are determined as follows [5]:

Algorithm A(S;T )

0. If |S| ≤ 3

1. Return {S ∪ T}
2. Let S0 denote the first |S| − 3|S|/4 elements of S, S1 the next |S|/4c elements,
S2 the next |S|/4c elements, and S3 the remaining |S|/4c elements
3. Return A(S0;S2 ∪ S3 ∪ T ) ∪ A(S0;S1 ∪ S3 ∪ T ) ∪ A(S0;S1 ∪ S2 ∪ T )

The main idea is given two classifiers, each consistent with an i.i.d. data set independent
from the other. The probability that they both make a mistake on a random point is bounded
by bounding the error rate of the first classifier, then bounding the error rate of under the
conditional distribution given that the first one made a mistake.

Note that the final algorithm takes the majority of the classifiers, hence giving an improper
algorithm. Following this approach, projecting a majority classifier into the proper space
yielded the upper bound in Table 1.
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5 Proper Learning, Helly Number, and an Optimal SVM Bound
In this part Y is restricted to {−1, 1}. There have been several reductions made from the PAC
learning main problem to help understand the optimal sample complexity of some classes.
In [4] are introduced geometrical measurement of the complexity of the space, namely: the
dual Helly number, the hollow star number and the projection number. We choose to focus
on the projection number as it is the one that better suits our application of the study of
improper versus proper learning.

For any finite H′ ⊆ H and l ≥ 2, define the set XH′,l ⊆ X of all the points x on which
less than 1− l fraction of all classifiers in H′ disagree with the majority classifier hmaj:

XH′,l = {x ∈ X :
∑
h∈H′

1[h(x) ̸= hmaj(x) <
|H′|
l

]}

We denote by ProjH(H′) any element in {h ∈ H : h(x) = Majority(H′), for all x ∈ XH′,k)p}.

Definition 6 (Projection Number). The projection number of a class H, denoted by kp, is
the smallest integer k ≥ 2 such that, for any finite H′ ⊆ H, there exists h ∈ H that agrees
with Majority(H′) on the entire set XH′,k. If no such integer k exists, define kp := ∞.

The algorithm for generating the subsets is as follows:

Algorithm A(S;T )

1. If |S| ≤ 4, Return ERM(S ∪ T )

2. Let S0 denote the first |S|/2 elements of S
3. Let S1, ...Skp+1 be independent uniform without replacement subsamples of S \S0

of size |S|/4
3. Let hi = A(S0;T ∪ Si) for each i = 1, ..., kp + 1

4. Return ĥ = ProjH(h1, . . . , hkp+1)

To better understand the complexity indicators introduced, we will introduce one more
lemma. We denote by H[S] the subset of H which elements are consistent with S.

Definition 7 (The dual Helly number). The dual Helly number of H, denoted by kw, as the
smallest integer k such that, for any S sampled from Z such that HS = ∅, there is a set
W ⊆ S with |W | ≤ k such that H[W ] = ∅. If no such k exists, we define kw = ∞.

Definition 8 (The hollow star number). The hollow star number of H, denoted by ko, as
the largest integer k such that there is a sequence S = ((x1, y1), . . . (xk, yk)) ∈ (X × Y)k for
which H[S] = ∅ and that every neighbor S ′ of S verifies H[S ′] ̸= ∅. If no such largest k
exists, define ko = ∅.

Lemma 9.

• ko ≤ kp ≤ kw.

• If kw is finite or H closed, ko = kp = kw.
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6 Bounding generalization error via Mutual information
Now we turn our attention to input-output mutual information of algorithms. We present
various generalization guarantees for learning algorithms that are stable in mutual informa-
tion [10][11].

Definition 10. A random process {Xt}t∈T along with a metric d on T is subgaussian if
EXt = 0 for all t and:

E[eλ(Xt−Xs)] ≤ e
1
2
λ2d2(t,s), for all λ ≥ 0, t, d ∈ T

Using Hoeffding inequality, we get that {genµ(w)}w∈W is a gaussian sub-processes with
the metric d(genµ(w), genµ(v)) =

||ℓ(hw,·)−ℓ(hv ,·)||∞√
n

for any distribution µ on Z.

Consider a pair of random variables X and Y with joint distribution PX,Y . Let X̄, Ȳ be
independent copies of X,Y such that PX̄,Ȳ = PX ⊗ PY .

Lemma 11. If f(X̄, Ȳ ) is σ-subgaussian under PX̄,Ȳ = PX ⊗ PY ,
i.e for all λ, E(eλ(f(X̄,Ȳ )−E(f(X̄,Ȳ )) ≤ e

1
2
λ2σ2 , then:

|E[f(X,Y )]− E[f(X̄, Ȳ )| ≤
√

2σ2I(X;Y )

Observe that genµ(PW |S) can be written as E[f(S̄, W̄ )− E[f(S,W )] where the joint dis-
tribution of S and W is PS,W = µ⊗n ⊗ PW |S and f(s, w) = 1

n

∑
i ℓ(w, zi) .

If ℓ(w,Z) is σ-subgaussian for all w ∈ W , then f(S,w) is σ/
√
n-subgaussian due to the i.i.d.

assumption on Zi’s, hence f(S̄, W̄ ) is σ/
√
n-subgaussian.

Using the previous lemma, we get upper bounds on the generalisation error:

Theorem 12. Suppose ℓ(w,Z) is a σ-subgaussian under µ for all w ∈ W then:

|genµ(PW |S)| ≤
√

2σ2

n
I(S;W )

Define the collection of empirical risks of the hypotheses in W , ΛW (S) = (LS(w))w ∈ W .
Setting X to ΛW (S), Y to W and picking f(ΛW (s), w) = Ls(w) in the previous lemma yields:

Theorem 13. Suppose ℓ(w,Z) is a σ-subgaussian under µ for all w ∈ W then:

|genµ(PW |S)| ≤
√

2σ2

n
I(ΛW (S);W )

Note that it is a slight improvement as I(ΛW (S);W ) ≤ I(S;W ) as ∆W (S)− S −W is a
Markov chain, seeing that for all w ∈ W , LS(w) is a function of S.

This analysis with a bit more work adds a concentration bound for the absolute generalization
error, gen+

µ (A) = gen+
µ (PW |S) = E[|Lµ(w)− LS(w)|].

Theorem 14. Suppose ℓ(w,Z) is a σ-subgaussian under µ for all w ∈ W . If a learning
algorithm satisfies that I(ΛW (S);W ) ≤ ε, then:

gen+
µ (PW |S) ≤

√
2σ2

n
(ε+ log 2)
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7 Chaining method for Mutual information
Another way to get bounds on the generalization is to exploit the dependencies between
hypotheses. The technique of chaining is known to give tighter bounds than the union
bound. We start with a fundamental result which is based on the chaining method [12][13].
A random process {Xt}t∈T is separable if there is T0 ⊆ T countable such that Xt ∈ lim s→t

s∈T0

Xs

almost surely, i.e ∃(sn)n sequence in T0 such that sn → t and Xsn → Xt. For a metric space
(T, d), let N(T, d, ε) denote the covering number of (T, d) at scale ε, similar to an ε-net.

Theorem 15. Assume that {Xt}t∈T is a separable subgaussian process on the bounded metric
space (T, d), then:

E[supt∈TXt] ≤ 6
∑
k∈Z

2−k
√

log N(T, d, 2−k)

An ϵ-partition P = {A1, A2, ..., Am} of the set T of the metric space (T, d) verifies that
for all i ∈ [m], Ai can be contained within a ball of radius ϵ.

Definition 16. A sequence of partitions {Pk}∞k=m of a set T is called an increasing sequence
if for all k ≥ m and each A ∈ Pk+1, there exists B ∈ Pk such that A ⊆ B.

For any such sequence and any t ∈ T , let [t]k denote the unique set A ∈ Pk such that t ∈ A.
Now we introduce the chaining method for mutual information [13]:

Theorem 17. Assume that {Xt}t∈T is a separable subgaussian process on the bounded metric
space (W , d). Let {Pk}∞k=k1(T

be an increasing sequence of partitions of T , where for each
k ≥ k1(T ), Pk is a 2−k-partition of (T, d).

E[XW ] ≤ 3
√
2

∞∑
i=k1(T )

2−k
√
I([W ]k;XT )

Furthermore, assume that {genµ(w)}w∈W is a separable subgaussian process on the bounded
metric space (W , d). Let {Pk}∞k=k1(W) be an increasing sequence of partitions of W , where
for each k ≥ k1(W), Pk is a 2−k-partition of (W , d).

genµ(PW |S) ≤ 3
√
2

∞∑
i=k1(W)

2−k
√
I([W ]k;S)

If 0 ∈ {ℓ(hw, .) : w ∈ W}, we can derive an upper bound for the absolute generalization
error:

gen+
µ (PW |S) ≤ 3

√
2

∞∑
i=k1(W)

2−k
√

I([W ]k;S) + log 2
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8 Chaining method for Conditional Mutual information
We can apply the chaining procedure to mutual information as the work in [14].

Theorem 18. Assume that XW = {Xw}w∈W is a separable subgaussian process on the
bounded metric space (W ; d). Consider the sequence of functions (Πk)k≥k1(W) where k1(W)
is the largest integer that satisfies 2−(k1−1) ≥ diam(W), and for all k > k1, Πk : W → W is a
function satisfying d(w; Πk(w)) ≤ 2−k.
Define W̃k = Πk(W ) for k ≥ k1 and W̃k1−1 = w0 for an arbitrary w0 ∈ W . We have:

E[XW ] ≤ 3
√
2

∞∑
k=k1(W)

2−k

√
I(W̃k−1, W̃k;XW)

Considering a XW of interest and after removing the dependence in Wk − 1, they present
the following theorem.

Theorem 19. Assume that XW = {
√
ngen(w)}w∈W is a separable subgaussian process on

the bounded metric space (W ; d) and the learned hypothesis W is a deterministic function
of XW . Consider the sequence of functions (Πk)k≥k1(W) where k1(W) is the largest integer
that satisfies 2−(k1−1) ≥ diam(W), and for all k > k1, Πk : W → W is a function satisfying
d(w; Πk(w)) ≤ 2−k.
Define W̃k = Πk(W ) for k ≥ k1. We have:

E[XW ] ≤ 1√
n
6
√
2

∞∑
k=k1(W)

2−k

√
I(W̃k;XW)

The proof starts as follows:

E[XW ] ≤ 3
√
2

∞∑
k=k1(W)

2−k

√
I(W̃k−1, W̃k;XW)

= 3
√
2

∞∑
k=k1(W)

2−k

√
I(W̃k;XW) + I(W̃k−1;XW |W̃k)

≤ 3
√
2

∞∑
k=k1(W)

2−k

√
I(W̃k;XW) + I(W̃k−1;XW) (1)

(1) comes from the fact that if X,Y, Z form a Markov chain (in any order), then I(X;Y |Z) ≤
I(X;Y ).
W̃k−1 ⊥ W̃k|XW , because of the deterministic relation between W and XW .
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9 Reducing the CMI of an algorithm
In this part Y is restricted to {−1, 1}and we consider the 0− 1 loss.

Conjecture 1. There is a constant c > 0 such that, for every VC class H, with dimension
d, if there exists a proper learning algorithm with the expected risk no greater than cd/n
for every realizable distribution µ, then there exists a proper learning algorithm An with
CMIµ(An) ≤ cd and E(LSn(An(Sn)) ≤ cd/n for every realizable distribution µ.

Let the super-sample Z be an 2 × n array of i.i.d random variables following µ, U be a
sequence of i.i.d. Bernoulli random variables in {0, 1}, independent from Z, with P(Ui =
0) = P(Ui = 1) = 1/2, and, for every n ∈ N, let Sn = (ZUj,j)1≤j≤n.

Recall that CMIµ(A) = I(A(S);U |Z). Note that as was observed in [1], this quantity is
equivalent to I(A(S);S|Z) when µ is atomless.

10 CMI of VC classes with finite star number
Recently it has been proven the optimal excess risk bound is also yielded by the CMI approach
for stable compression schemes, such as SVM[15].

Theorem 20. Let H be a concept class with a stable compression scheme (κ, ρ) of size
k. Then, for every realizable data distribution µ and n ≥ k, CMIµ(An) ≤ 2klog 2, where
An = ρ(κ(.)).
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A Proof of theorem 2
We prove the following theorem:

Theorem 21. Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0,
with probability at least 1− δ, each of the following holds for all g ∈ G:

E[g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2 E[R̂S(G)] +

√
log(2

δ
)

2n
(2)

E[g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2 R̂S(G) + 3

√
log(2

δ
)

2n
(3)

Proof. Denoting ES[g] = 1
n

∑n
i=1 g(Zi)], the proof revolves around applying McDiarmid’s

inequality to:
Φ(S) = supg∈GE[g]− ES(g)

For two neighbour samples S, S ′ differing say in zn,

Φ(S)− Φ(S ′) ≤ supg∈GES(g)− ES′(g) ≤ 1

n

Symmetrically we get that |Φ(S) − Φ(S ′)| ≤ 1
n
, by McDiarmid’s inequality with probability

1− δ/2:

Φ(S) ≤ E[Φ(S)] +

√
log(2

δ
)

2n

The part left to bound is ES[Φ(S)]:

ES[Φ(S)] = ES[supg∈G ES′ [g]− ES(g)] (4)
= ES[supg∈G ES′ [ES′(g)− ES(g)]] (5)
≤ ES,S′ [supg∈G ES′(g)− ES(g)] (6)

= ES,S′,σ[supg∈G
1

n

n∑
i=1

σi(g(Zi)− g(Z ′
i))] (7)

≤ 2 ES[R̂S(G)] (8)

(6) comes from Jensen’s inequality applied to the convex supremum function.
To get (4), we can use McDiarmid’s inequality to R̂S(G), after observing that for two neigh-
bors S, S ′, |R̂S(G)− R̂S′(G)| ≤ 1

n
, which yields : E[R̂S(G)] ≤ R̂S(G) +

√
log( 2

δ
)

2n
.
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B Proof of theorem 4
Theorem 4 is a simple consequence of the following theorem:

Theorem 22. Let µ be a distribution on Z. Let A be a randomized algorithm. Let ℓ : ×Z →
R be an arbitrary (deterministic, measurable) function. Suppose there exists ∆ : Z2 → R
such that |ℓ(h, z1)− ℓ(h, z2)| ≤ ∆(z1, z2) for all z1, z2 ∈ Z and h ∈ ̋. Then:

|genµ(A)| ≤
√

2 CMIµ(A)

n
Eµ⊗2 [∆(Z1, Z2)2]

Proof. The proof is mostly based on the following lemma:
Lemma 23. Let X and Y be random variables on Ω (with X absolutely continuous with
respect to Y ) and f : Ω → R a (measurable) function. Then

E[f(X)] ≤ DKL(X||Y ) + log E[ef(Y )]

And on the following corollary:
Let S, S ′, and Z be independent random variables where S and S ′ have identical distributions.
Let A be a random function independent from S, S ′, and Z. Let g be a fixed function. Then

EA,S,Z [g(A(S, Z), S, Z)] ≤ EZ [inft>0
I(A(S, Z), S) + log EA,S′,S,Z [e

tg(A(S,Z),S′,Z)]

t
] (9)

≤ inft>0
I(A(S, Z), S|Z) + EZ [log EA,S′,S,Z [e

tg(A(S,Z),S′,Z)]]

t
(10)

C Proof of lemma 9

Proof. • Recall XH′,l = {x ∈ X :
∑

h∈H′ 1[h(x) ̸= hmaj(x) <
|H′|
l
]}.

Given exactly ko classifiers H′ in H that are witnessing an hollow star sequence of points,
for any l < k0, the region XH′,l must contain the hollow star sequence. Therefore the
majority vote of the H′ classifiers is unrealizable on XH′,l. So, kp ≥ ko.

• Suppose kw < ∞. If for some finite multiset H′ ⊆ H there is no h ∈ H that coincides
with Majority(H′) on XH′,kw , then S = {(x,Majority(H′)(x)) : x ∈ XH′,kw}is an unreal-
izable set. Therefore, it contains a subset W of size at most kw that is also unrealizable.
By definition of XH′,l, each point (x, y) in W contradicts strictly fewer than |H′|/kw
elements of H′, which contradicts the unrealizability of S. Therefore, kp ≤ kw.
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D Proof of the optimal complexity of improper learning
The proof uses the following lemma [16]:
Lemma 24. For any δ ∈ (0, 1), n ∈ N, f ∗ ∈ H and any probability measure µ over X , letting
Z1, . . . , Zn be independent µ-distributed random variables, with probability at least 1 − δ,
every h ∈ H[{(Zi, f

∗(Zi))}i≤n] satisfies

erµ(h, f
∗) = µ({x : h(x) ̸= f ∗(x)}) ≤ 2

n

(
d log2(

2en

d
) + log2(

2

δ
)

)
The lemma gives an upper bound of the probability that two consistent learners on n

samples disagree.
Now we fix f ∗ ∈ H, a probability measure µ over X , and for brevity use S1:m = (Z1:m, f

∗(Z1:m)),
For any classifier h, define ER(h) := {x ∈ X : h(x) ̸= f ∗(x)}.
First notice that for any S ′ ⊆ S and T , H[S ∪ T ] = H[S] ∩H[T ] and that H[S] ⊆ H[S ′]. So
by construction for any S ′ ∈ A(S, T ), H[S ′] ⊆ H[T ], hence the well definition of the objects
that follow.

Claim 25. For any n ∈ N, for every δ ∈ (0, 1), and every finite sequence T of points in X ×Y
and f ∗ ∈ H[T ], wp. at least 1− δ, then hn,T = Majority(L(A(S1:n;T ))) satisfies

erµ(hn,T , f
∗) ≤ c

n+ 1

(
d+ ln(18

δ
)

)

The claim yields the theorem by taking T = ∅, and n ≥ c
ε

(
d+ ln18

δ

)
.

Proof of claim 25: We prove the claim by induction on n. The base case is direct by taking
n < c ln(18e)− 1.

Suppose the claim holds for every m < n integers, we want to show it holds for n as well,
and in particular n ≥ 4. Let S0, S1, S2, S3 be as in the definition of A(S;T ), with S = S1:n.
Also denote T1 = S2∪S3∪T, T2 . . . and hi = Majority(L(A(S0;Ti))). It is easy to check that
the hi are well defined. By inductive hypothesis, setting δ′ = δ/9, we get for an event Ei

1 of
probability at least 1− δ/9:

µ(ER(hi)) ≤
c

|S0|+ 1

(
d+ ln(9 · 18

δ
)

)
≤ 4c

n

(
d+ ln(9 · 18

δ
)

)
(11)

We denote by Ri the sequence of elements in Si∩(ER(hi)×Y) = {(Zi,t, f
∗(Zi, t))}t≤Ni

. Since
hi and Si are independent, Zi,1, . . . , Zi,Ni

are conditionally independent given hi and Ni, each
with conditional distribution µ(.|ER(hi). Thus, applying lemma 24 on probability at least
1− δ/9, if Ni > 0, every h ∈ H[Ri] for an event Ei

2 of probability at least 1− δ/9:

erµ(.|ER(hi)(h, f
∗) ≤ 2

Ni

(
d log2(

2eNi

d
) + log2(

18

δ
)

)
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Since for j ̸= i we have H[Tj] ⊆ H[Ri], then for h ∈
∪

j∈{1,2,3}\{i} L(A(S0, Tj)), we get for Ei
2:

µ(ER(hi) ∩ ER(h)) = µ(ER(h)|ER(hi))µ(ER(hi))

≤ µ(ER(hi))
2

Ni

(
d log2(

2eNi

d
) + log2(

18

δ
)

)
(12)

Since hi and Si are independent, by Chernoff bound (applied under the conditional distri-
bution given hi) and the law of total probability, then there is an event Ei

3 of probability at
least 1− δ/9 for which µ(ER(hi)) ≥ 23

⌊n/4⌋ ln(
9
δ
) ≥ 2(10/3)2

⌊n/4⌋ ln(9
δ
) and:

Ni ≥
7|Si|
10

µ(ER(hi)) =
7n

40
µ(ER(hi)) (13)

Now on Ei
1 ∩ Ei

2 ∩ Ei
3, if µ(ER(hi)) ≥ 23

⌊n/4⌋ ln(
9
δ
) we have that Ni > 0 and so for every

h ∈
∪

j∈{1,2,3}\{i} L(A(S0, Tj)) combining (11),(12),(13):

µ(ER(hi) ∩ ER(h)) ≤ µ(ER(hi))
2

Ni

(
d log2(

2eNi

d
) + log2(

18

δ
)

)
≤ 20

7ln 2(⌊n/4⌋)

(
d log(

2e7n
40
µ(ER(hi))

d
) + log(18

δ
)

)
≤ 20

7ln 2(⌊n/4⌋)

(
d log(

2e7n
40

4c
n

(
d+ ln(9·18

δ
)
)

d
) + log(18

δ
)

)

≤ 20

7ln 2(⌊n/4⌋)

(
d ln(9ec

5
) + ln (

18

δ
)

)
(14)

(14) uses the fact that n > c ln(18e) − 1 > 3200 and ⌊n/4⌋ > (n − 4)/4 > 799
800

3200
3201

n+1
4

. (14)
is also less than 150

n+1

(
d+ ln (18

δ
)
)
.

Notice that if µ(ER(hi)) <
23

⌊n/4⌋ ln(
9
δ
), then µ(ER(hi) ∩ ER(h)) ≤ µ(ER(hi)) <

23
⌊n/4⌋ ln(

9
δ
) <

150
n+1

(
d+ ln (18

δ
)
)
.

Therefore on Ei
1 ∩ Ei

2 ∩ Ei
3, for every h ∈

∪
j∈{1,2,3}\{i} L(A(S0, Tj)):

µ(ER(hi) ∩ ER(h)) <
150

n+ 1

(
d+ ln (

18

δ
)

)
Now consider hmaj = Majority(L(A(S;T ))) with S = S1:n. By pigeonhole principle for x ∈ X ,
there is i such that hi(x) = hmaj(x). Since {L(A(S0;Ti))}i 3-equipartitions L(A(S;T ), it
must be that

∪
j∈{1,2,3}\{i} L(A(S0;Tj)) has 1/4 of its classifiers agreeing with hmaj on any

x ∈ X .
Therefore for I a random variable uniformly distributed on {1, 2, 3} (independent of the data),
h̃ a random variable conditionally (given I and S) uniformly distributed on the classifiers∪

j{1,2,3}\{I} L(A(S0;Tj)) for any fixed x1 ∈ ER(hmaj), with conditional (given S) probability
at least 1/12, hI(x) = h̃(x) = hmaj(x), so that x ∈ ER(hI) ∩ ER(h̃) as well. So for X a
random variable of distribution µ independent of I and h̃:

13



E
[
µ(ER(hI) ∩ ER(h̃))|S

]
= E

[
P(X ∈ ER(hI) ∩ ER(h̃)|I, h̃, S)|S

]
= E

[
P(X ∈ ER(hI) ∩ ER(h̃)|h̃, S)|S

]
≥ E

[
P(X ∈ ER(hI) ∩ ER(h̃)|h̃, S)1X∈ER(hmaj)|S

]
≥ E

[
1/121X∈ER(hmaj)|S

]
= 1/12 erµ(hmaj , f

∗)

Finally on
∩

i E
i
1 ∩ Ei

2 ∩ Ei
3:

erµ(hmaj, f
∗) ≤ 12 E

[
µ(ER(hI) ∩ ER(h̃))|S

]
≤ 12 maximaxj ̸=imaxh∈L(A(S0;Tj))µ(ER(hi) ∩ ER(h))

≤ 1800

n+ 1
(d+ ln (

18

δ
)) =

c

n+ 1
(d+ ln (

18

δ
))

By union bound the event
∩

i E
i
1 ∩ Ei

2 ∩ Ei
3 has probability at least 1 − δ for any δ ∈ (0, 1).

Hence the claim by induction.
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