
MCS 541 Project
Gregoire Fournier

March 3, 2025

Function and TM intro.

1 Ladner’s theorem: Existence of NP intermediate problems [1] [2]
Recall:

• TIME(f(n)) is the set of all functions computable in O(f(n)), or the set of all lan-
guages decided by a DTM in O(f(n)) time. P =

⋃
k TIME(nk).

• L ∈ NP iff ∃p polynomial and ∃M poly-time DTM st. ∀x ∈ L, ∃c, |c| = p(x) with
M(x, c) = 1.

• NP =
⋃

k NTIME(nk) (non-deterministic choices made by an accepting computation
of an NDTM can be viewed as a certificate that the input is in the language).

• A is NP -complete iff A ∈ NP and ∀L ∈ NP , L <P A.

A lot of NP -problems are complete.

• SAT by Cook Levin theorem.

• 3SAT, CLIQUE, VERTEX-COVER, HAMPATH, SUBSET-SUM ...

Theorem 1 (Ladner) If P ̸= NP, then there is L st:
{
L ∈ (NP \P)

L ̸∈ NP-complete
.

Proof. Clearly SAT ∈ (NP\P) (otherwise P = NP), for H : N → N poly-time computable,
define SATH as follows:

SATH = {w01nH(n)|w ∈ SAT, |w| = n}
Then there are two main behaviours for SATH relying on H:

i. If H bounded, SATH is SAT with some polynomial size padding, so SATH NP-
complete.

ii. Otherwise H unbounded, then the padding is not of polynomial size, and SATH cannot
be NP-complete:

• Otherwise SAT <P SATH , so ∃k st. there is a O(nk) reduction from SAT to
SATH .

1

• An element of size n of SAT would be mapped to an element of size O(nk), but
since H is unbounded, then any instance of SAT,w, must be of size o(n) so that
|w||w|H(|w|)

= O(nk) can be satisfied.
• Such a reduction poly-time reduces instances of SAT of size n to o(n), so SAT ∈ P

which leads to P = NP, contradiction.

Now consider such a function H:

H(n):= smallest i < log(logn) st. ∀x ∈ {0, 1}∗, |x| < log(n),

Mi halts on x within i|x|i steps and Mi outputs 1 iff x ∈ SATH .

H(n) = min{i < log(log(n))|∀w, |w| < log(n),Mi decides w ∈ SATH within i|w|i steps}

Claim 2 (SATH not in P) Suppose otherwise, so there is a TM M that decides it in O(nk)
and in particular there is i > k st. M = Mi one of the machines described as above. So H
is bounded by i, therefore by (i) SATH cannot be in P (otherwise SAT ∈ P and P = NP).

Claim 3 (SATH not NP-complete) SATH ̸∈ P, so ∀i ∈ N there is w ∈ SATH st. Mi takes
O(ni) time to decide, so H(n) is unbounded. By (ii) SATH not NP-complete.

2

2 The Gap and Speed up theorems [3]

2.a Gap theorem
Recall:

• definition function space constructible: f : N → N is spc if there exists an O(f(n))
space TM exists that always halts with the bin. representation of f(n) with input 1n.

• SPACE separation/hierarchy theorem: if f(n) space constructible, then ∃L language
decidable in O(f(n)) space but not in o(f(n)) space. (uses diagonalisation argument)

Theorem 4 (Gap Theorem) For any total computable function f : N → N st. f(x) ≥ x,
there exists a time bound T (n) st TIME(f(T (n))) = TIME(T (n)).

Proof. Consider Ti(x) the running time of TM Mi on input x. Now define:

∀n, T (n) = minm∈N{m|∀i ≤ n, Ti(n) ≤ f(m) → Ti(n) ≤ m}

To compute T (n), start at m = 0 and if i ≤ n st. m < Ti(n) ≤ f(m), set m := Ti(n). The
value of T (n) is the final value of the m of the process.

Claim 5 (T (n) witnesses the theorem) Suppose Mi runs in time f(T (n)), then Ti(n) ≤ f(T (n))
a.e. By construction for n ≥ i, Ti(n) ≤ T (n).

2.b Speed-up theorem
Theorem 6 (Speed-up Theorem) For any total computable monotone function f : N →
N st. f(x) ≥ x2, there exists a recursive set A such that for any TM Mi accepting A, there
exists a TM Mj accepting A with f(Tj(x)) < Ti(x) a.e.

3

Proof. Denoting fn = f ◦ ... ◦ f︸ ︷︷ ︸
n times

, construct a set A ⊆ 0∗ with the following properties:

i. for any machine Mi accepting A, Ti(0
n) > fn−i(2) a.e.

ii. ∀k, there exists a machine Mj accepting A st. Tj(0
n) ≤ fn−k(2) a.e.

And then :

∃Mj st. f(Tj(0
n)) ≤ f(fn−i−1(2)) = fn−i(2) a.e. by (ii) + monotonicity of f

So applying (i) yields ∃Mj st. f(Tj(0
n)) < Ti(0

n), which is the theorem.

Construction of the set A satisfying (i) and (ii):

Consider M0,M1, ... TM for the alphabet {0}. Let N be an enumeration machine that
maintains a finite list of descriptions of machines currently being simulated. It is assumed a
description of Mi suitable for simulation is obtained from the index i.

The computation of N proceeds in stages. Initially, the list is empty. At stage n, N puts
the next machine Mn at the end of the list. It then simulates the machines on the list in order.

For each such Mi, it simulates Mi on input 0n for fn−i(2) steps, picks the first one that halts
and return the opposite of what the machine decided. If no machine halts within the time,
then N yields 0n ̸∈ A.

Claim 7 (A has property (i))
The machine Mi is put on the list at stage i. If Mi halts within time fn−i(2) on 0n and is

not chosen for deletion, then some higher priority machine on the list must have been chosen;
this can happen only finitely many times, so eventually Mi will be chosen for deletion at
worse at stage n.

At that point, 0n will be put into A iff 0n ̸∈ L(Mi), so that L(Mi) ̸= A. Therefore any
machine Mi that runs in time fn−i(2) i.o. does not accept A, which is (i).

Claim 8 (A has property (ii))
NTS that ∀k, A is accepted by a TM Nk running in time fn−k(2) a.e. The key idea is to

hard-code the first m stages of the computation of N in the finite control of Nk, as for each
Mi, either:

(a) Ti(0
n) ≤ fn−i(2) i.o., and there is a stage m(i) at which N deletes Mi from the list.

(b) Ti(0
n) > fn−i(2) a.e., and there is a stage m(i) after which Mi always exceeds its time.

Let m = maxi≤km(i). m(i) and m are well defined but hard to find.

4

• For inputs 0n, (n ≤ m), Nk has a finite list of elements hard-coded, so looks up to
decide 0n ∈ A.

• For 0n, n > m:

– Nk simulates the action of N on stages m+ 1,m+ 2, ..., n starting with a certain
list hard-coded in its finite control. The list it starts with is the list of N at stage
m with all i ≤ k machines Mi deleted.

The simulation behave as N would at stage m and beyond: ∀i,Mi with i ≤ k,
either :
(a) it has been deleted from the list by stage m or
(b) it will always exceed its allotted time after stage m, so will not be deleted
Nk can thus decide 0n ∈ A.

– It remains to estimate the running time of Nk on input 0n:
∗ If n ≤ m, Nk takes linear time (read + lookup).
∗ If n > m, Nk simulates at most n − k machines of the list on n −m inputs,

each for at most fn−k−1(2) steps. Mi has at most log(i) states, at most logi
tape symbols, at most logi transitions in its finite control and so one step of
Mi can be simulated in c(log(i))2 steps of Nk.
Thus the total time for the simulations is at most cn2(logn)2fn−k−1(2) and:

cn2(logn)2fn−k−1(2) ≤ 22
n−k−1 ≤ fn−k−1(2), because f(m) ≥ m2.

So:

cn2(logn)2fn−k−1(2) ≤ fn−k−1(2)2 ≤ f(fn−k−1(2)) = fn−k(2), (ii).

5

3 The Arithmetic hierarchy [3][4]

3.a Definitions
Let A,B be sets of strings.

• A is recursively enumerable in B if A = L(MB) for some oracle TM M with oracle B

• A is recursive in B if A = L(MB) for some oracle TM M with oracle B such that MB is
total (i.e membership in A is decidable relative to an oracle for B), and write A ≤T B.
The relation ≤T is called Turing reducibility.

Then define a hierarchy of classes above the r.e. sets (analogous to the polynomial time
hierarchy) as follows. Fix the alphabet {0, 1} and identify strings in {0, 1} with the natural
numbers.

Σ0
1 := {r.e. sets}

∆0
1 := {recursive sets}

Σ0
n+1 := {L(MB)|B ∈ Σ0

n} = {A|A is r.e. in some B ∈ Σ0
n}

∆0
n+1 := {L(MB)|B ∈ Σ0

n,M
Btotal} = {A|A is recursive in some B ∈ Σ0

n}

Π0
n := {complements of sets in Σ0

n}

3.b Characterisation in terms of quantifiers and reduction
Theorem 9 i. A set A is in Σ0

n iff there exists a decidable (n+ 1)-ary predicate R st:

A = {x|∃y1∀y2∃y3...QynR(x, y1, ..., yn)} where Q is
{
∃ if n is odd
∀ otherwise

ii. A set A is in Π0
n iff there exists a decidable (n+ 1)-ary predicate R st:

A = {x|∀y1∃y2∀y3...QynR(x, y1, ..., yn)} where Q is
{
∀ if n is odd
∃ otherwise

iii. ∆0
n = Σ0

n ∩ Π0
n

For A ⊆ Σ∗ and B ⊆ Γ∗, define A ≤m B (A many-one reducible to B) if there exists a total
recursive function σ : Σ → Γ st:

∀x ∈ Σ, x ∈ A iff σ(x) ∈ B

6

3.c Examples
3.c.1 HP is ≤m-complete for Σ0

1

HP = {(M,x)|∃t st M halts on x in t steps }

For any TM M , the map x → M#x is a total computable map reducing L(M) to HP .

3.c.2 MP is ≤m-complete for Σ0
1

MP = {(M,x)|∃t st M accepts x in t steps }

For any TM M , the map x → M#x is a total computable map reducing L(M) to MP .

3.c.3 EMPTY is ≤m-complete forΠ0
1

3.c.4 TOTAL is ≤m-complete for Π0
2

3.c.5 FIN is ≤m-complete for Σ0
2

3.c.6 COF is ≤m-complete forΣ0
3

Figure 1: The arithmetic hierarchy [3]

7

3.c.7 If A,B r.e, so are A ∪B and A ∩B.

• A ∪ B: By proposition 8.2[4], there are f, g total recursive such that A = ran(f) and
B = ran(g). Define h as follows :
∀x ∈ N, h(2x) = f(x) and h(2x + 1) = g(x). h is total recursive and ran(h) =
ran(f) ∪ ran(g) = A ∪B. So by 8.2[4], A ∪B is r.e.

• A ∩ B: By definition, there are f, g partial recursive such that A = dom(f) and
B = dom(g). Define h as follows :
∀x ∈ N, h(x) = f(x) + g(x). h is partial recursive and dom(h) = dom(f) ∩ dom(g) =
A ∩B. So by definition, A ∩B is r.e.

3.c.8 Let (We)e∈N enumeration for the r.e subsets of N

3.c.8.1 A is Σ0
3

A = {e : ∃h∀n(2h + n2h+1 ∈ We)}

Which is the same as :

A = {e : ∃h∀n∃s(2h + n2h+1 ∈ W s
e)}

Since W s
e is a ∆1 set, by proposition 8.15[4] A is Σ0

3.

3.c.8.2 Every Σ0
3 subset of N is many-one reducible to A

Let B be any Σ0
3 set. Then there is a recursive function R(x, h, n, s) such that :

x ∈ B ⇔ ∃h∀n∃sR(x, h, n, s)

Let f(x, n) =

{
2h + n2h+1 µh∀n∃sR(x, h, n, s)

↑ otherwise
By the parametrization lemma[4]

there is a total recursive g such that ϕg(x)(n) = f(x, n).
Then

⋃
h∈N{2h + n2h−1 : n ∈ N} ∩Wg(x) ̸= ∅.

x ∈ B ⇒ ∃h∀nf(x, n) = 2h + 2h+1

⇒ ∃h∀ϕg(x)(n) = 2h + n2h+1

⇒ ∃h∀n(2h + n2h+1 ∈ Wg(x))
⇒ g(x) ∈ A

Thus x ∈ B iff g(x) ∈ A. Therefore every Σ0
3 subset of N is many-one reducible to A.

8

4 The Polynomial hierarchy [2][3]

4.a Definitions
The polynomial hierarchy generalizes the definitions of NP, coNP,Σp

2,Π
p
2 to all the languages

that can be defined via a combination of a polynomial-time computable predicate and a
constant number of ∀/∃ quantifiers:

4.b Properties

4.c Examples

References
[1] M. Sipser. Introduction to the Theory of Computation. 1996.

[2] Arora and Barak. Computational complexity - a modern approach, 2009.

[3] D. Kozen. Theory of Computation. 2006.

[4] D. Marker. Lecture notes for math 502. 2015.

9

	Ladner's theorem: Existence of NP intermediate problems sipser arora
	The Gap and Speed up theorems kozen
	Gap theorem
	Speed-up theorem

	The Arithmetic hierarchy kozenmarker
	Definitions
	Characterisation in terms of quantifiers and reduction
	Examples
	 HP is m-complete for 01
	 MP is m-complete for 01
	 EMPTY is m-complete for01
	 TOTAL is m-complete for 02
	 FIN is m-complete for 02
	 COF is m-complete for03
	If A,B r.e, so are AB and A B.
	Let (We)eN enumeration for the r.e subsets of N

	The Polynomial hierarchy arorakozen
	Definitions
	Properties
	Examples

