MCS 541 Project

Gregoire Fournier

March 3, 2025

Function and TM intro.

1 Ladner's theorem: Existence of NP intermediate problems [1] [2]

Recall:

- TIME(f(n)) is the set of all functions computable in O(f(n)), or the set of all languages decided by a DTM in O(f(n)) time. $P = \bigcup_k TIME(n^k)$.
- $L \in NP$ iff $\exists p$ polynomial and $\exists M$ poly-time DTM st. $\forall x \in L, \exists c, |c| = p(x)$ with M(x,c) = 1.
- $NP = \bigcup_k NTIME(n^k)$ (non-deterministic choices made by an accepting computation of an NDTM can be viewed as a certificate that the input is in the language).
- A is NP-complete iff $A \in NP$ and $\forall L \in NP$, $L \leq_P A$.

A lot of NP-problems are complete.

- SAT by Cook Levin theorem.
- 3SAT, CLIQUE, VERTEX-COVER, HAMPATH, SUBSET-SUM ...

Theorem 1 (Ladner) If $\mathbf{P} \neq \mathbf{NP}$, then there is L st: $\begin{cases} L \in (\mathbf{NP} \setminus \mathbf{P}) \\ L \notin \mathbf{NP}\text{-complete} \end{cases}$.

Proof. Clearly $SAT \in (\mathbf{NP} \setminus \mathbf{P})$ (otherwise $\mathbf{P} = \mathbf{NP}$), for $H : \mathbb{N} \to \mathbb{N}$ poly-time computable, define SAT_H as follows:

$$SAT_{H} = \{w01^{n^{H(n)}} | w \in SAT, |w| = n\}$$

Then there are two main behaviours for SAT_H relying on H:

- i. If H bounded, SAT_H is SAT with some polynomial size padding, so SAT_H NP-complete.
- ii. Otherwise H unbounded, then the padding is not of polynomial size, and SAT_H cannot be **NP**-complete:
 - Otherwise $SAT <_P SAT_H$, so $\exists k$ st. there is a $O(n^k)$ reduction from SAT to SAT_H .

- An element of size n of SAT would be mapped to an element of size $O(n^k)$, but since H is unbounded, then any instance of SAT, w, must be of size o(n) so that $|w|^{|w|^{H(|w|)}} = O(n^k)$ can be satisfied.
- Such a reduction poly-time reduces instances of SAT of size n to o(n), so $SAT \in \mathbf{P}$ which leads to $\mathbf{P} = \mathbf{NP}$, contradiction.

Now consider such a function H:

H(n) :=smallest i < log(logn) st. $\forall x \in \{0, 1\}^*, |x| < log(n),$

 M_i halts on x within $i|x|^i$ steps and M_i outputs 1 iff $x \in SAT_H$.

 $H(n) = \min\{i < \log(\log(n)) | \forall w, |w| < \log(n), M_i \text{ decides } w \in SAT_H \text{ within } i|w|^i \text{ steps} \}$

Claim 2 (SAT_H not in **P**) Suppose otherwise, so there is a TM M that decides it in $O(n^k)$ and in particular there is i > k st. $M = M_i$ one of the machines described as above. So His bounded by i, therefore by (i) SAT_H cannot be in **P** (otherwise $SAT \in \mathbf{P}$ and $\mathbf{P} = \mathbf{NP}$).

Claim 3 (SAT_H not **NP**-complete) $SAT_H \notin \mathbf{P}$, so $\forall i \in \mathbb{N}$ there is $w \in SAT_H$ st. M_i takes $O(n^i)$ time to decide, so H(n) is unbounded. By (*ii*) SAT_H not **NP**-complete.

2 The Gap and Speed up theorems [3]

2.a Gap theorem

Recall:

- definition function space constructible: $f : \mathbb{N} \to \mathbb{N}$ is spc if there exists an O(f(n)) space TM exists that always halts with the bin. representation of f(n) with input 1^n .
- SPACE separation/hierarchy theorem: if f(n) space constructible, then $\exists L$ language decidable in O(f(n)) space but not in o(f(n)) space. (uses diagonalisation argument)

Theorem 4 (**Gap Theorem**) For any total computable function $f : \mathbb{N} \to \mathbb{N}$ st. $f(x) \ge x$, there exists a time bound T(n) st TIME(f(T(n))) = TIME(T(n)).

Proof. Consider $T_i(x)$ the running time of TM M_i on input x. Now define:

$$\forall n, T(n) = \min_{m \in \mathbb{N}} \{ m | \forall i \le n, T_i(n) \le f(m) \to T_i(n) \le m \}$$

To compute T(n), start at m = 0 and if $i \leq n$ st. $m < T_i(n) \leq f(m)$, set $m := T_i(n)$. The value of T(n) is the final value of the m of the process.

Claim 5 (T(n) witnesses the theorem) Suppose M_i runs in time f(T(n)), then $T_i(n) \leq f(T(n))$ a.e. By construction for $n \geq i$, $T_i(n) \leq T(n)$.

2.b Speed-up theorem

Theorem 6 (**Speed-up Theorem**) For any total computable **monotone** function $f : \mathbb{N} \to \mathbb{N}$ st. $f(x) \ge x^2$, there exists a recursive set A such that for any TM M_i accepting A, there exists a TM M_j accepting A with f(Tj(x)) < Ti(x) a.e.

Proof. Denoting $f^n = \underbrace{f \circ \ldots \circ f}_{n \text{ times}}$, construct a set $A \subseteq 0*$ with the following properties:

- i. for any machine M_i accepting A, $T_i(0^n) > f^{n-i}(2)$ a.e.
- ii. $\forall k$, there exists a machine M_j accepting A st. $T_j(0^n) \leq f^{n-k}(2)$ a.e.

And then :

$$\exists M_j$$
 st. $f(T_j(0^n)) \leq f(f^{n-i-1}(2)) = f^{n-i}(2)$ a.e. by (ii) + monotonicity of f

So applying (i) yields $\exists M_j$ st. $f(T_j(0^n)) < T_i(0^n)$, which is the theorem.

Construction of the set A satisfying (i) and (ii):

Consider M_0, M_1, \ldots TM for the alphabet $\{0\}$. Let N be an enumeration machine that maintains a finite list of descriptions of machines currently being simulated. It is assumed a description of M_i suitable for simulation is obtained from the index i.

The computation of N proceeds in stages. Initially, the list is empty. At stage n, N puts the next machine M_n at the end of the list. It then simulates the machines on the list in order.

For each such M_i , it simulates M_i on input 0^n for $f^{n-i}(2)$ steps, picks the first one that halts and return the opposite of what the machine decided. If no machine halts within the time, then N yields $0^n \notin A$.

Claim 7 (A has property (i))

The machine M_i is put on the list at stage *i*. If M_i halts within time $f^{n-i}(2)$ on 0^n and is not chosen for deletion, then some higher priority machine on the list must have been chosen; this can happen only finitely many times, so eventually M_i will be chosen for deletion at worse at stage *n*.

At that point, 0^n will be put into A iff $0^n \notin L(M_i)$, so that $L(M_i) \neq A$. Therefore any machine M_i that runs in time $f^{n-i}(2)$ i.o. does not accept A, which is (i).

Claim 8 (A has property (ii))

NTS that $\forall k, A$ is accepted by a TM N_k running in time $f^{n-k}(2)$ a.e. The key idea is to hard-code the first m stages of the computation of N in the finite control of N_k , as for each M_i , either:

- (a) $T_i(0^n) \leq f^{n-i}(2)$ i.o., and there is a stage m(i) at which N deletes M_i from the list.
- (b) $T_i(0^n) > f^{n-i}(2)$ a.e., and there is a stage m(i) after which M_i always exceeds its time.

Let $m = max_{i \le k}m(i)$. m(i) and m are well defined but hard to find.

- For inputs $0^n, (n \leq m), N_k$ has a finite list of elements hard-coded, so looks up to decide $0^n \in A$.
- For $0^n, n > m$:
 - N_k simulates the action of N on stages m + 1, m + 2, ..., n starting with a certain list hard-coded in its finite control. The list it starts with is the list of N at stage m with all $i \leq k$ machines M_i deleted.

The simulation behave as N would at stage m and beyond: $\forall i, M_i$ with $i \leq k$, either :

- (a) it has been deleted from the list by stage m or
- (b) it will always exceed its allotted time after stage m, so will not be deleted

 N_k can thus decide $0^n \in A$.

- It remains to estimate the running time of N_k on input 0^n :
 - * If $n \leq m$, N_k takes linear time (read + lookup).
 - * If n > m, N_k simulates at most n k machines of the list on n m inputs, each for at most $f^{n-k-1}(2)$ steps. M_i has at most log(i) states, at most logitape symbols, at most logi transitions in its finite control and so one step of M_i can be simulated in $c(log(i))^2$ steps of N_k .

Thus the total time for the simulations is at most $cn^2(logn)^2 f^{n-k-1}(2)$ and:

$$cn^2(logn)^2 f^{n-k-1}(2) \le 2^{2^{n-k-1}} \le f^{n-k-1}(2)$$
, because $f(m) \ge m^2$.

So:

$$cn^{2}(logn)^{2}f^{n-k-1}(2) \leq f^{n-k-1}(2)^{2} \leq f(f^{n-k-1}(2)) = f^{n-k}(2),$$
(ii).

3 The Arithmetic hierarchy [3][4]

3.a Definitions

Let A, B be sets of strings.

- A is recursively enumerable in B if $A = L(M^B)$ for some oracle TM M with oracle B
- A is recursive in B if $A = L(M^B)$ for some oracle TM M with oracle B such that M^B is total (i.e membership in A is decidable relative to an oracle for B), and write $A \leq_T B$. The relation \leq_T is called Turing reducibility.

Then define a hierarchy of classes above the r.e. sets (analogous to the polynomial time hierarchy) as follows. Fix the alphabet $\{0, 1\}$ and identify strings in $\{0, 1\}$ with the natural numbers.

$$\Sigma_1^0 := \{ \text{r.e. sets} \}$$

$$\Delta_1^0 := \{ \text{recursive sets} \}$$

$$\Sigma_{n+1}^0 := \{ L(M^B) | B \in \Sigma_n^0 \} = \{ A | A \text{ is r.e. in some } B \in \Sigma_n^0 \}$$

 $\Delta^0_{n+1} := \{ L(M^B) | B \in \Sigma^0_n, M^B total \} = \{ A | A \text{ is recursive in some } B \in \Sigma^0_n \}$

 $\Pi_n^0 := \{ \text{complements of sets in } \Sigma_n^0 \}$

3.b Characterisation in terms of quantifiers and reduction

Theorem 9 i. A set A is in Σ_n^0 iff there exists a decidable (n+1)-ary predicate R st:

$$A = \{x | \exists y_1 \forall y_2 \exists y_3 ... Q y_n R(x, y_1, ..., y_n)\} \text{ where } Q \text{ is } \begin{cases} \exists \text{ if } n \text{ is odd} \\ \forall \text{ otherwise} \end{cases}$$

ii. A set A is in Π_n^0 iff there exists a decidable (n+1)-ary predicate R st:

$$A = \{x | \forall y_1 \exists y_2 \forall y_3 \dots Q y_n R(x, y_1, \dots, y_n)\} \text{ where } Q \text{ is } \begin{cases} \forall \text{ if } n \text{ is odd} \\ \exists \text{ otherwise} \end{cases}$$

iii. $\Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$

For $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$, define $A \leq_m B$ (A many-one reducible to B) if there exists a total recursive function $\sigma : \Sigma \to \Gamma$ st:

$$\forall x \in \Sigma, x \in A \text{ iff } \sigma(x) \in B$$

3.c Examples

3.c.1 *HP* is \leq_m -complete for Σ_1^0

 $HP = \{(M, x) | \exists t \text{ st } M \text{ halts on } x \text{ in } t \text{ steps } \}$

For any TM M, the map $x \to M \# x$ is a total computable map reducing L(M) to HP.

3.c.2 MP is \leq_m -complete for Σ_1^0

 $MP = \{(M, x) | \exists t \text{ st } M \text{ accepts } x \text{ in } t \text{ steps } \}$

For any TM M, the map $x \to M \# x$ is a total computable map reducing L(M) to MP.

- 3.c.3 EMPTY is \leq_m -complete for Π_1^0
- 3.c.4 TOTAL is \leq_m -complete for Π_2^0
- 3.c.5 FIN is \leq_m -complete for Σ_2^0
- 3.c.6 COF is \leq_m -complete for Σ_3^0

Figure 1: The arithmetic hierarchy [3]

- 3.c.7 If A, B r.e, so are $A \cup B$ and $A \cap B$.
 - $A \cup B$: By proposition 8.2[4], there are f, g total recursive such that A = ran(f) and B = ran(g). Define h as follows : $\forall x \in \mathbb{N}, h(2x) = f(x)$ and h(2x + 1) = g(x). h is total recursive and $ran(h) = ran(f) \cup ran(g) = A \cup B$. So by 8.2[4], $A \cup B$ is r.e.
 - $A \cap B$: By definition, there are f, g partial recursive such that A = dom(f) and B = dom(g). Define h as follows : $\forall x \in \mathbb{N}, h(x) = f(x) + g(x)$. h is partial recursive and $dom(h) = dom(f) \cap dom(g) = A \cap B$. So by definition, $A \cap B$ is r.e.

3.c.8 Let $(W_e)_{e \in \mathbb{N}}$ enumeration for the r.e subsets of \mathbb{N} 3.c.8.1 A is Σ_3^0

$$A = \{e : \exists h \forall n(2^{h} + n2^{h+1} \in W_e)\}$$

Which is the same as :

$$A = \{e : \exists h \forall n \exists s (2^h + n2^{h+1} \in W_e^s)\}$$

Since W_e^s is a Δ_1 set, by proposition 8.15[4] A is Σ_3^0 .

3.c.8.2 Every Σ_3^0 subset of \mathbb{N} is many-one reducible to A

Let B be any Σ_3^0 set. Then there is a recursive function R(x, h, n, s) such that :

 $x \in B \Leftrightarrow \exists h \forall n \exists s R(x, h, n, s)$

Let $f(x,n) = \begin{cases} 2^h + n2^{h+1} & \mu h \forall n \exists s R(x,h,n,s) \\ \uparrow & \text{otherwise} \end{cases}$ By the parametrization lemma[4] there is a total recursive g such that $\phi_{g(x)}(n) = f(x,n)$.

there is a total recursive g such that $\phi_{g(x)}(n) = f(x, n)$ Then $\bigcup_{h \in \mathbb{N}} \{2^h + n2^{h-1} : n \in \mathbb{N}\} \cap W_{g(x)} \neq \emptyset$.

$$\begin{aligned} x \in B \Rightarrow \exists h \forall n f(x, n) &= 2^{h} + 2^{h+1} \\ \Rightarrow \exists h \forall \phi_{g(x)}(n) &= 2^{h} + n2^{h+1} \\ \Rightarrow \exists h \forall n(2^{h} + n2^{h+1} \in W_g(x)) \\ \Rightarrow g(x) \in A \end{aligned}$$

Thus $x \in B$ iff $g(x) \in A$. Therefore every Σ_3^0 subset of \mathbb{N} is many-one reducible to A.

4 The Polynomial hierarchy [2][3]

4.a Definitions

The polynomial hierarchy generalizes the definitions of NP, coNP, Σ_2^p , Π_2^p to all the languages that can be defined via a combination of a polynomial-time computable predicate and a constant number of \forall/\exists quantifiers:

4.b Properties

4.c Examples

References

- [1] M. Sipser. Introduction to the Theory of Computation. 1996.
- [2] Arora and Barak. Computational complexity a modern approach, 2009.
- [3] D. Kozen. Theory of Computation. 2006.
- [4] D. Marker. Lecture notes for math 502. 2015.