MCS 541 Project

Gregoire Fournier

March 3, 2025

Function and TM intro.

1 Ladner’s theorem: Existence of NP intermediate problems [1] [2]

Recall:

o« TIME(f(n)) is the set of all functions computable in O(f(n)), or the set of all lan-
guages decided by a DTM in O(f(n)) time. P = {J, TIME(n").

o L € NP iff Ip polynomial and IM poly-time DTM st. Vx € L, Je, |¢| = p(x) with
M(z,c) = 1.

« NP =\J, NTIME(n*) (non-deterministic choices made by an accepting computation
of an NDTM can be viewed as a certificate that the input is in the language).

o Ais NP-complete iff A€ NPand VL € NP, L <p A.
A lot of N P-problems are complete.
o SAT by Cook Levin theorem.
o 3SAT, CLIQUE, VERTEX-COVER, HAMPATH, SUBSET-SUM ...

L e (NP\P)

Theorem 1 (Ladner) If P # NP, then there is L st:
L ¢ NP-complete

Proof. Clearly SAT € (NP \ P) (otherwise P = NP), for H : N — N poly-time computable,
define SATy as follows:

SATy = {w01™ " jw € SAT, |w| = n}

Then there are two main behaviours for SATy relying on H:

i. If H bounded, SATy is SAT with some polynomial size padding, so SATy NP-
complete.

ii. Otherwise H unbounded, then the padding is not of polynomial size, and SATy cannot
be NP-complete:

o Otherwise SAT <p SATy, so Jk st. there is a O(n*) reduction from SAT to
SATY.

« An element of size n of SAT would be mapped to an element of size O(n*), but
since H is unbounded, then any instance of SAT, w, must be of size o(n) so that
Jw[l#1”™Y = O(nk) can be satisfied.

« Such a reduction poly-time reduces instances of SAT of size n to o(n), so SAT € P
which leads to P = NP, contradiction.

Now consider such a function H:

H(n):= smallest i < log(logn) st. Yz € {0,1}", |z| < log(n),
M; halts on o within i|x|* steps and M; outputs 1 iff x € SATy.
H(n) = min{i < log(log(n))|Vw, |w| < log(n), M; decides w € SATy within i|w|" steps}
Claim 2 (SATy not in P) Suppose otherwise, so there is a TM M that decides it in O(n*)

and in particular there is ¢« > k st. M = M, one of the machines described as above. So H
is bounded by i, therefore by (i) SATy cannot be in P (otherwise SAT € P and P = NP).

Claim 3 (SATy not NP-complete) SATy & P, so Vi € N there is w € SATy st. M; takes
O(n") time to decide, so H(n) is unbounded. By (ii) SATy not NP-complete.

2 The Gap and Speed up theorems [3]

2.a Gap theorem
Recall:

o definition function space constructible: f : N — N is spc if there exists an O(f(n))
space TM exists that always halts with the bin. representation of f(n) with input 1".

» SPACE separation/hierarchy theorem: if f(n) space constructible, then 3L language
decidable in O(f(n)) space but not in o(f(n)) space. (uses diagonalisation argument)

Theorem 4 (Gap Theorem) For any total computable function f : N — N st. f(z) > =z,
there exists a time bound 7'(n) st TIME(f(T'(n))) = TIME(T(n)).

Proof. Consider T;(z) the running time of TM M, on input . Now define:

Vn,T(n) = mingpen{m|Vi <n,T;(n) < f(m) = T;(n) < m}

To compute T'(n), start at m = 0 and if i < n st. m < T;(n) < f(m), set m := T;(n). The
value of T'(n) is the final value of the m of the process.

Claim 5 (T'(n) witnesses the theorem) Suppose M; runs in time f(7'(n)), then T;(n) < f(T(n))
a.e. By construction for n > i, T;(n) < T'(n).

2.b Speed-up theorem

Theorem 6 (Speed-up Theorem) For any total computable monotone function f : N —
N st. f(z) > 2%, there exists a recursive set A such that for any TM M; accepting A, there
exists a TM M; accepting A with f(Tj(z)) < Ti(z) a.e.

Proof. Denoting f* = fo...o f, construct a set A C 0% with the following properties:
—_—

n times
i. for any machine M; accepting A, T;(0") > f"7*(2) a.e.
ii. Vk, there exists a machine M; accepting A st. T;(0") < f"7*(2) a.e.
And then :
IM; st. f(T;(0™) < f(f12)) = f"7%(2) a.e. by (ii) + monotonicity of f
So applying () yields 3M; st. f(7;(0™)) < T;(0™), which is the theorem.
Construction of the set A satisfying (i) and (2):

Consider My, My, ... TM for the alphabet {0}. Let N be an enumeration machine that
maintains a finite list of descriptions of machines currently being simulated. It is assumed a
description of M; suitable for simulation is obtained from the index i.

The computation of N proceeds in stages. Initially, the list is empty. At stage n, N puts
the next machine M,, at the end of the list. It then simulates the machines on the list in order.

For each such M;, it simulates M; on input 0" for f"~%(2) steps, picks the first one that halts
and return the opposite of what the machine decided. If no machine halts within the time,
then N yields 0" € A.

Claim 7 (A has property (7))

The machine M; is put on the list at stage 7. If M; halts within time f~*(2) on 0" and is
not chosen for deletion, then some higher priority machine on the list must have been chosen;
this can happen only finitely many times, so eventually M; will be chosen for deletion at
worse at stage n.

At that point, 0" will be put into A iff 0" ¢ L(M;), so that L(M;) # A. Therefore any
machine M; that runs in time f"7%(2) i.0. does not accept A, which is (i).

Claim 8 (A has property (ii))

NTS that Vk, A is accepted by a TM Nj, running in time f"%(2) a.e. The key idea is to
hard-code the first m stages of the computation of NV in the finite control of Ny, as for each
M;, either:

(a) T;(0™) < f*%(2) i.o., and there is a stage m(i) at which N deletes M; from the list.
(b) T;(0™) > f*%(2) a.e., and there is a stage m(i) after which M; always exceeds its time.

Let m = maz;<ym(i). m(i) and m are well defined but hard to find.

o For inputs 0", (n < m), Ni has a finite list of elements hard-coded, so looks up to
decide 0™ € A.

e For 0",n>m:

— N; simulates the action of N on stages m + 1, m + 2, ..., n starting with a certain
list hard-coded in its finite control. The list it starts with is the list of IV at stage
m with all 7 < k machines M; deleted.

The simulation behave as N would at stage m and beyond: Vi, M; with ¢« < k,
either :

(a) it has been deleted from the list by stage m or

(b) it will always exceed its allotted time after stage m, so will not be deleted
N}, can thus decide 0" € A.

— It remains to estimate the running time of Nj on input 0™:

« If n < m, Nj takes linear time (read + lookup).

x If n > m, Nj simulates at most n — k machines of the list on n — m inputs,
each for at most f"*~1(2) steps. M; has at most log(i) states, at most logi
tape symbols, at most log: transitions in its finite control and so one step of
M can be simulated in c(log(i))? steps of Ny.

Thus the total time for the simulations is at most cn?(logn)?f"~%=1(2) and:

en®(logn)? 7 F1(2) < 221 < 7R 1(2), because f(m) > m?.
So:

en(logn)? [(2) < fPEHR < F(UMENR) = f1RR), ()

3 The Arithmetic hierarchy [3][4]

3.a Definitions

Let A, B be sets of strings.
o A is recursively enumerable in B if A = L(M?) for some oracle TM M with oracle B

o« Aisrecursive in B if A = L(M?) for some oracle TM M with oracle B such that M? is
total (i.e membership in A is decidable relative to an oracle for B), and write A <r B.
The relation <r is called Turing reducibility.

Then define a hierarchy of classes above the r.e. sets (analogous to the polynomial time
hierarchy) as follows. Fix the alphabet {0, 1} and identify strings in {0,1} with the natural
numbers.

) = {r.e. sets}
AY := {recursive sets}
Y0 i ={L(MP)Bex’} ={A|Ais re. insome B € X0}
AV = {L(MP”)|B € X%, MPtotal} = {A|A is recursive in some B € X0}
I1° := {complements of sets in X0}

3.b Characterisation in terms of quantifiers and reduction

Theorem 9 i. Aset Aisin X0 iff there exists a decidable (n + 1)-ary predicate R st:

Jif n is odd

A = {3y Fys..QynR(x, 1, ..., yn) } Where Q is .
VY otherwise

ii. A set A isin IT12 iff there exists a decidable (n + 1)-ary predicate R st:

YV if n is odd

A = {z|Vy13y2Vys..Quu (2, Y1, ..., yn) } Where @ is .
3 otherwise
i, AD — 30 110

For A C ¥x and B C I'«, define A <,,, B (A many-one reducible to B) if there exists a total
recursive function o : ¥ — I st:

Veed ze€Aiff o(z) € B

3.c Examples

3.c.1 HP is <,,-complete for X!
HP = {(M,x)|3t st M halts on z in t steps }
For any TM M, the map © — M#uz is a total computable map reducing L(M) to HP.

3.c.2 MP is <,,-complete for 2(1)
MP = {(M,z)|3t st M accepts z in ¢ steps }
For any TM M, the map © — M+ is a total computable map reducing L(M) to M P.

3.c.3 EMPTY is <,,-complete forIl?
3.c4 TOTAL is <,,-complete for IT9
3.c.5 FIN is <,,-complete for X9

3.c.6 COF is <,,-complete for¥)

L] 1-[0
= COF s
Aj
b2 g * |m
FIN TOTAL
Aj

HP
MP

r.e. sets co-T.e. sets

Aj

EMPTY

recursive sets

Figure 1: The arithmetic hierarchy [3]

3.c.T If A,Br.e, soare AUB and AN B.

« AU B: By proposition 8.2[4], there are f, g total recursive such that A = ran(f) and
B = ran(g). Define h as follows :
Ve € N,h(2z) = f(z) and h(2x + 1) = g(z). h is total recursive and ran(h) =
ran(f)Uran(g) = AU B. So by 8.2[4], AU B is r.e.

« AN B: By definition, there are f, g partial recursive such that A = dom(f) and
B = dom(g). Define h as follows :
Ve € N h(x) = f(x) 4+ g(z). h is partial recursive and dom(h) = dom(f) Ndom(g) =
AN B. So by definition, AN B is r.e.
3.c.8 Let (W,)een enumeration for the r.e subsets of N
3.c81 Ais X}
A ={e:In2" +n2"t c W)}
Which is the same as :

A ={e:3IWn3s(2" + n2"tt € WH))
Since W# is a A set, by proposition 8.154] A is X3.

3.c.8.2 Every XJ subset of N is many-one reducible to A

Let B be any X% set. Then there is a recursive function R(z, h,n, s) such that :

r € B < 3hVnasR(x, h,n,s)
2" 4 n2Mt yhn3sR(z, h,n, s)

+ otherwi By the parametrization lemmal4]
otherwise

Let f(z,n) = {

there is a total recursive g such that ¢, (n) = f(z,n).
Then [, cn{2" + 02" :n e N} N Wy #

r € B= 3hvnf(z,n) =2 4 20!
= Elh‘v’gzﬁg(x)(n) = 2" 4 2ttt

= JhVn(2" + n2" € W,(z))

= g(z) e A

Thus x € B iff g(z) € A. Therefore every 9 subset of N is many-one reducible to A.

4 The Polynomial hierarchy [2][3]

4.a, Definitions

The polynomial hierarchy generalizes the definitions of NP, coN P, X5 TI5 to all the languages
that can be defined via a combination of a polynomial-time computable predicate and a
constant number of V/3 quantifiers:

4.b Properties

4.c Examples
References

[1] M. Sipser. Introduction to the Theory of Computation. 1996.
2] Arora and Barak. Computational complexity - a modern approach, 2009.
[3] D. Kozen. Theory of Computation. 2006.

[4] D. Marker. Lecture notes for math 502. 2015.

	Ladner's theorem: Existence of NP intermediate problems sipser arora
	The Gap and Speed up theorems kozen
	Gap theorem
	Speed-up theorem

	The Arithmetic hierarchy kozenmarker
	Definitions
	Characterisation in terms of quantifiers and reduction
	Examples
	 HP is m-complete for 01
	 MP is m-complete for 01
	 EMPTY is m-complete for01
	 TOTAL is m-complete for 02
	 FIN is m-complete for 02
	 COF is m-complete for03
	If A,B r.e, so are AB and A B.
	Let (We)eN enumeration for the r.e subsets of N

	The Polynomial hierarchy arorakozen
	Definitions
	Properties
	Examples

