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1 Intro
Informally, an instance of a problem is Bilu-Linial stable if the optimal solution does not
change when the instance is perturbed.
Such instances yields more robust solutions than worst cases in many problems, and are
closer to real word application.
Some studied applications for a perturbation α are:

• Graph partitioning, G = (V,E,w) and G′ = (V,E,w) st. ∀e ∈ E,w(e) ≤ w′(e) ≤
αw(e).

• Clustering J = (V, d) and J ′ = (V, d′) st. ∀u, v ∈ V, d(u, v) ≤ d′(u, v) ≤ αd(u, v).

An instance is α-stable if its every α perturbation does not change the optimal solution.
When studying LPs-SDPs, an instance is α-weak Bilu-Linial stable for an (α, ε) perturbation
resilience.

Figure 1: Known results for Bilu-Linial stability [1]
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2 Clustering: Stable instances

2.a Metric perturbation resilience for k-Center [2]
Motivation: Fast algorithm to solve 2-metric perturbation resilient instances of k-center.

Note that given a set of centers or a clustering, it is possible to efficiently find the corre-
sponding clustering or the corresponding optimal set of centers.

Definition 1 (k-Center) Given vertices V , a metric d, in V define k-centers, c1, ...ck which
induce a clustering C1, ...Ck on V based on the d-nearest centers. Hence:

Ci = {u : ∀j ̸= i, d(u, ci) ≤ d(u, cj)}

cost = maximaxu∈Ci
d(u, ci)

Theorem 2 (Stability and approximation for k-center) Every α-approximation algorithm finds
the optimal solutions of α-metric perturbation resilient instances.

Proof. Consider (Ci)i the optimal clustering solution with cost r∗ and (C ′
i)i the approxi-

mation. By definition of an approximation ∀i, ∀u ∈ C
′
i , d(u, c

′
i) ≤ αr∗. Now define d′:

∀u, v ∈ V, d′(u, v) =


d(u, v)/α if d(u, v) ≥ αr∗

r∗ if d(u, v) ∈ [r∗, αr∗]

d(u, v) if d(u, v) ≤ r∗

So that d′ defines a distance, it must satisfy the triangle inequality, so define f :

f(x) =


1/α if x ≥ αr∗

r∗/x if x ∈ [r∗, αr∗]

1 if x ≤ r∗

Then d′ = (f ◦ d)d. Note that f is non increasing, xf(x) non decreasing. Now for u, v, w,
suppose wlog d(u,w) ≥ max(d′(u, v), d′(v, w)), want to prove d′(u, v) + d′(v, w) ≥ d(u,w).
Since xf(x) non decreasing f(d(u,w)) ≥ min(f(d(u, v)), f(d(v, w))) and then:

d′(u, v) + d′(v, w) = ((f ◦ d)d)(u, v) + ((f ◦ d)d)(v, w) ≥ (f ◦ d)(u,w)(d(u, v) + d(v, w))

So by triangular inequality in d:

d′(u, v) + d′(v, w) ≥ (f ◦ d)(u,w)d(u,w) ≥ d′(u,w)

d′ is an α perturbation as ∀u, v ∈ V, d
′(u,v)
d(u,v)

= f(d(u, v)) ∈ [1/α, 1]. Therefore C1, ..., Ck is still
the optimal clustering for d′ by definition of α resilience. Denote c1”, ..., ck” the optimal set
of centers for d′ of C1, ..Ck.

Define r(Ci) = minc∈Ci
maxu∈Ci

d(u, c) and fix i st r(Ci) = r∗. And in particular, ∃u, c ∈ Ci

st d(u, c) ≥ r(Ci) = r∗ and then d(u, ci”) ≥ r∗ as well. So the cost of C ′
1, ...C

′
k is at least r∗,

and cannot be more than r∗ since d′ ≤ d on V . So the cost of the clustering C ′
1, ..C

′
k of V
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according to d′ is r∗.

Finally the cost of C ′
1, ..C

′
k is also r∗: Denote c′1, ..., c

′
k the optimal set of centers for d′,as

∀i,∀u ∈ C ′
i, d(u, c

′
i) ≤ αr∗ and so d′(u, c′i) ≤ r∗. Therefore C ′

1, ..C
′
k is an optimal clustering

for d′, and it must be equal to C1, ..Ck.

2.b Clustering problems with separable center-based objectives [3]
Definition 3 (Separable center-based objectives) A clustering problem has a center-based ob-
jective if the following holds:

• Given S ⊂ V and a distance dS on S, it is possible to find the optimal center or set of
optimal centers (subset of S).

• The set of centers does not change when multiplying all distances in S by α.

• If C1, ..., Ck is an optimal clustering of V . Then ∀i, ∀p ∈ Ci d(p, ci) < d(p, cj).

It is separable if:

• The cost of the clustering is either the maximum or sum of the cluster scores.

• The score score(S, d|S) of each cluster S depends only on (S, d|S, and can be computed
in poly time.

Many standard clustering problems, such as k-center, k-means have separable center-based
objectives.
Now consider α-metric perturbation resilient instances (α = 1 +

√
2).

Theorem 4 (α-center proximity property)

i ̸= j, ∀p ∈ Ci, d(p, cj) > αd(p, ci)

Proof. Otherwise d(p, cj) ≤ αd(p, ci). Fix r∗ = d(p, ci) and define d′ as follows:

∀u, v, d′(u, v) = min[d(u, v), d(u, p) + r∗ + d(cj, v), d(v, p) + r∗ + d(cj, u)]

The metric d′(u, v) is the shortest path metric on the complete graph on V with edge lengths
len(u, v) = d(u, v) for all (u, v) except the edge (p, cj) (len(p, cj) = r∗).
Since d(u, v)/len(u, v) is at most d(p, cj)/r∗ ≤ α for all edges (u, v), then ∀u, v, d(u, v)/d′(u, v) ≤
α.
Therefore d′ is an α-metric perturbation of d. Now to finish, show that d′ = d within Ci and
within Cj. Then it yields:

d(ci, p) = d′(ci, p) < d′(cj, p) = r∗ = d(ci, p)

Which is a contradiction.
Proof. d′ = d within Ci and within Cj

Consider u, v ∈ Ci, to show d(u, v) = d′(u, v), prove d(u, v) ≤ min(d(u, p)+r∗+d(cj, v), d(v, p)+
r∗ + d(cj, u)). Wlog assume d(u, p) + r∗ + d(cj, v) ≤ d(v, p) + r∗ + d(cj, u).
Then d(u, p) + r∗ + d(cj, v) = d(u, p) + d(p, ci) + d(cj, v) ≤ d(u, ci) + d(cj, v). If v ∈ Ci,
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d(v, ci) < d(v, cj), and thus d(u, p) + r∗ + d(cj, v) > d(u, ci) + d(ci, v) ≥ d(u, v).

Consider u, v ∈ Cj. Similarly to the previous case, need to show d(u, v) ≤ min(d(u, p)+ r∗+
d(cj, v), d(v, p)+r∗+d(cj, u)). Now u ∈ Cj so d(u, cj) < d(u, ci). Thus, d(u, p)+r∗+d(cj, v) =
(d(u, p) + d(p, ci)) + d(cj, v) ≥ d(u, ci) + d(cj, v) > d(u, cj) + d(cj, v) ≥ d(u, v).

To get to the algorithm quicker, some theorems are admitted:

Theorem 5 (Some properties from the previous results)

• All points outside of Ci lie at distance greater than ri from ci.
So Ci = B(ci, ri).

• Each p ∈ Ci is closer to ci than to any point q outside of Ci. Furthermore, ∀p ∈ Ci and
q ̸∈ Ci,

√
2d(p, ci) < d(p, q).

• For Ci ̸= Cj, d(ci, cj) >
√
2max(ri, rj).

2.c A clustering algorithm in O(nk)

• Similar to building the minimum spanning tree, start by assigning a cluster to each
vertex. For n− 1 steps, fusion the two nearest clusters. Assign a binary decomposition
tree T to this process.

• Using a dynamic program algorithm, identify the best k Cis in T .

The distance used is called the closure distance:

Definition 6 (Closure distance DS)

∀A1, A2 ⊂ V, DS(A1, A2) is the minimum r st. A1 ∪ A2 has an r-central point.

x ∈ A is r-central for A if:

• A ⊂ B(x, r)

• if d(p, q) ≤ d(p, x) ≤ r then d(q, x) ≤ r

Now the goal is to prove:

Theorem 7 (The Cis appear in T ) Consider a cluster Ci in the optimal clustering.

• Let C be a cluster/node in the decomposition tree. Then:

C ⊂ Ci, Ci ⊂ C or C ∩ Ci = ∅

• Ci appears in the decomposition tree.
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