The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

March 3, 2025



The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

# Linear Algebra Methods in Combinatorics

### cf. Babai and Frankl (1988)

### Definition 1

Let *L* be a set of nonnegative integers. The family  $\mathcal{F}$  is *L*-intersecting, if  $|E \cap F| \in L$  for every pair *E*, *F* of distinct members of  $\mathcal{F}$ .

### Problem 2 (Restricted Intersection Problem) What is the maximum number of members in a k-uniform L-intersecting family of subsets of a set of n elements?

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

## Couple theorems

Theorem 3 (Ray-Chaudhuri – Wilson Theorem)

Let L be a set of s integers and  $\mathcal{F}$  an L-intersecting k-uniform family of subsets of a set of n elements, where  $s \leq k$ . Then:

$$|\mathcal{F}| \leq \binom{n}{s}$$

### Theorem 4 (Babai and Frankl (1988))

For every  $k \ge s \ge 1$  and  $n \ge 2k^2$ , there exists a k-uniform family  $\mathcal{F}$  of size:

$$|\mathcal{F}| > (n/2k)^s$$

on n points such that  $|E \cap F| \le s - 1$  for any two distinct sets  $E, F \in \mathcal{F}$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

# Proof of this second theorem

#### Proof.

Let p be a prime st  $n/(2k) , and we have <math>k \le p$ . Fix a k-subset A of  $\mathbb{F}_p$ . Let X be an n-set containing  $A \times \mathbb{F}_p$ . For a function  $f : A \to \mathbb{F}_p$ , the graph

$$G(f) = \{(\xi, f(\xi)) : \xi \in A\}$$

is a k-subset of X.

Let  $\mathcal{F}$  consist of the graphs of the polynomials of degree  $\leq s - 1$  over  $\mathbb{F}_p$ , restricted to A. Any two different polynomials of degree  $\leq s - 1$ , must have their graphs with at most s - 1 points in common.

The number of such polynomials is  $p^s > (n/2k)^s$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

Invariants, colouring and the WL algorithm

### Definition 5 (Colouring algorithm (or 1-WL))

For every graph G, we define a sequence of vertex colourings  $\chi_1^{(t)}(G)$  as follows:

• For every  $v \in V(G)$ , let  $\chi_1^{(0)}(G,v) := col(G,v)$ .

$$\chi_1^{(t+1)}(G, v) := (\chi_1^{(t)}(G, v), \{\{\chi_1^{(t)}(G, w) | w \in N(v)\}\})$$

The stable colouring is denoted χ<sub>1</sub><sup>(∞)</sup>(G).
χ<sub>1</sub><sup>(t)</sup> is vertex invariant.

In the same way we can define the k-dimensional WL algorithm  $\chi_k: V^k \to C$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

### An example



$$\chi_1^{(t+1)}(G, v) := (\chi_1^{(t)}(G, v), \{\{\chi_1^{(t)}(G, w) | w \in N(v)\}\})$$

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

## WL algorithm

Let V be a finite set and let  $\chi: V^k \to C$  be a coloring.

$$\circ$$
 step $_k(\chi)(v):=(\chi(v), M_\chi(v))$ , where

 $M_{\chi}(v) = \{\{(\chi(v[w/1]), \dots, \chi(v[w/k])) | w \in V\}\}$ 

•  $atp_{\mathfrak{A}}(v)$  is the isomorphism type of the ordered substructure of  $\mathfrak{A}$  induced by  $\{v_1, \ldots, v_k\}$ .

Definition 6 (k-WL algorithm)

$$\star \ \chi_k^{(0)}[\mathfrak{A}](v) := \mathsf{atp}_{\mathfrak{A}}(v)$$

\* 
$$\chi_k^{(r+1)}[\mathfrak{A}] := step_k(\chi_k^{(r)}[\mathfrak{A}])$$
, stabilizes at  $\chi_k^{(\infty)}[\mathfrak{A}]$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

## An upper bound on the number of iterations

The coloring  $\chi_1$  refines  $\chi_2$ , denoted  $\chi_1 \preceq \chi_2$ , if  $\chi_1$  is a more intricate coloring than  $\chi_2$ .

Theorem 7

Let V be a finite set of size n := |V|, let  $\chi_0 \dots, \chi_\ell : V^k \to C$  be a sequence of colorings such that:

•  $\chi_t$  is shufflable and compatible with equality for all  $t \in [0, \ell]$ ,

$$\circ \ \mathsf{step}_k(\chi_{t-1}) \succeq \chi_t \ \mathsf{for all} \ t \in [\ell], \ \mathsf{and}$$

 $\circ \chi_{t-1} \succ \chi_t$  for all  $t \in [\ell]$ .

Then  $\ell \leq 2n^{k-1}(\lceil k \log n \rceil + 1) = O(kn^{k-1} \log n)$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

# A long sequence of stable coloring

### Theorem 8

Suppose  $n \ge 2k^2$  and let V be a set of size |V| = 2n, then there is a sequence of colorings  $\chi_0 \dots, \chi_\ell : V^k \to C$  of length  $\ell \ge (\frac{n}{2k})^{k-1}$  such that:

- $\chi_t$  is shufflable and compatible with equality for all  $t \in [0, \ell]$ ,
- $\circ \ \chi_t$  is stable for all  $t \in [0, \ell]$ , and
- $\circ \chi_{t-1} \succ \chi_t$  for all  $t \in [\ell]$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

### How to get such colorings?

From  $\mathcal{F}$  on n points, we induce a coloring  $\chi_{\mathcal{F}}$  on  $V = U \times \{0, 1\}$ , as follows:

 $((u_1, a_1), \dots, (u_k, a_k)), ((u'_1a'_1), \dots, (u'_k, a'_k))$  are the same color iff:

(A) 
$$u_i = u'_i$$
 for all  $i \in [k]$ ,  
(B)  $(u_i, a_i) = (u_j, a_j) \Leftrightarrow (u'_i, a'_i) = (u'_j, a'_j)$  for all  $i, j \in [k]$ ,  
and

(C) if 
$$\{u_1, \ldots, u_k\} \in \mathcal{F}$$
, then  $\sum_i a_i \equiv \sum_i a'_i \mod 2$ .

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

# Proof of theorem 8

Recall Theorem 4:

For every  $n \ge 2k^2$  there exists a k-uniform set family  $\mathcal{F}$  over a universe U of n points such that:

$$\begin{array}{l} \circ \ |E_1 \cap E_2| \leq k-2 \text{ for all distinct } E_1, E_2 \in \mathcal{F}, \text{ and} \\ \circ \ |\mathcal{F}| \geq (\frac{n}{2k})^{k-1}. \end{array}$$

We set  $\mathcal{F}_t := \{E_1, \ldots, E_t\}$  and  $\chi_t = \chi_{\mathcal{F}_t}$ .

We get stability (hard part), refinement, and compatible with equality, shufflable properties of this sequence of colouring.

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm

### References

- Babai, L. and Frankl, P. (1988). Linear algebra methods in combinatorics i.
- Grohe, M., Lichter, M., and Neuen, D. (2023). The iteration number of the weisfeiler-leman algorithm.

The Iteration Number of the Weisfeiler-Leman Algorithm, Grohe et al. (2023)

Grégoire Fournier

Restricted intersection problems

The WL algorithm

Bounds on the k-WL algorithm