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1 The Weisfeiler-Leman Algorithm

The Weisfeiler-Leman (WL) algorithm is an isomorphism test. It iteratively computes an
isomorphism-invariant coloring of tuples of vertices of a graph.
Two graphs are distinguished, and hence non-isomorphic, if they have different colorings.
there is a well known logical characterisation:

The iteration number of k-WL, i.e., the number of iterations the algorithm requires to
stabilize, this is trivially at most n* — 1.

Let x1, x2: V¥ — O be colorings of k-tuples over a finite set V where C' is some finite set
of colors. The coloring x; refines ys, denoted x; = xo.

Let us fix k > 2 and consider a finite relational structure 2, let v = (vy,...,v;) € VE. We
define the atomic type of v, denoted by atpy(v), to be the isomorphism type of the ordered
substructure of 2 induced by {vy, ..., v}

Next, we describe a single refinement step of k-WL. Let V be a finite set and let y : V* —
C' be a coloring of all k-tuples over V' . We define the coloring stepy(x):

stepr(x) (v) = (x(v), My (v))
For all v = (vy,...,v;) € V¥ where M, (v) := {{(x(v[w/1]),...,x(v[w/k]))|w € V}} and
vfw/i] == (vi,...,v;_1,W, V41, ...,0) is the tuple obtained from v by replacing the i-th
entry by w.
We define the initial coloring computed by k-WL on the structure A via X,(CO) [2A](v) =
atpy(v) for all v € (V(A))".

For r > 0 we set xR = stepp(x\”[2]). Since x"HVERA] < xOE[A] for all r > 0,
there is some minimal s such that:

R = xR =



2 Upper bound

Theorem 1. For all k > 2, the k-dimensional WL algorithm stabilizes after O(kn*~tlogn)
refinement rounds on all relational structures 2 of arity at most k.

Proven for an algorithm at least as strong as WL.

o P a partition of V*¥. P is compatible with equality if for all P € P, for all tuples
(v1,...,vk), (v],...,v,) € P,and all 4,5 € [k] it holds that:

v; = vy iff v; = vj.
This is a condition on the size of the isomorphism.
» Moreover, P is shufflable if for every = : [k] — [k] and every P € P it holds that:
P = {(vr1ys - -, Uriy)) | (01, ... ,0k) € P} EP
Stronger than permutation, also hierarchy of complexity.

The refinement process of k-WL are shufflable and compatible with equality.

Theorem 2. Let V be a finite set of size n := |V, let xo...,x¢: V¥ — C be a sequence of
colorings such that:

1. x; is shufflable and compatible with equality for all ¢ € [0, ],
2. stepr(xi—1) = x for all ¢ € [¢], and

3. xt—1 = x¢ for all ¢ € [/].

Then ¢ < 2n*~!([klogn] + 1) = O(kn*~tlogn).

Note that Theorem 1 follows from Theorem 2 by observing that all colorings X,(f) [2A]

obtained from the refinement process of k-WL are shufflable and compatible with equality.

3 A long sequence of stable coloring

Theorem 3. Suppose n > 2k? and let V be a set of size |V| = 2n, then there is a sequence
of colorings xq...,x¢: V¥ — C of length ¢ > (%)"3_1 such that:

1. x; is shufflable and compatible with equality for all ¢ € [0, ¢,
2. x; is stable for all ¢ € [0, 4], and

3. xi—1 = x¢ for all ¢ € [/].

Couple remarks on the previous theorems:

« Tight up to a factor O(logn).

o Shows the limit of the setting, and "parallelization arguments”.



A k-uniform set family (over U) is a collection F of k-element subsets of U.
From F on n points, we induce a coloring x = on 2n elements, where V' = U x {0, 1}, as follows:

((ur,a1),. .., (ug, ar)), ((vyay),..., (u,a,)) are the same color iff:

(A) w; = u} for all i € [K],

1) 7

)
(B) (us,ai) = (uj,a5) < (uj, a;) = (u},a}) for all 4, j € [k], and
) if {ur, ..., ux} € F, then >, a; = ), aj mod 2.

Theorem 4 ([Babai and Frankl, 1988]). For every n > 2k? there exists a k-uniform set family
F over a universe U of n points such that:

1. |Ey1 N Ey| < k — 2 for all distinct Ey, Ey € F, and
2. |F| > (%)k‘l.

We set Fy := {Ey,...,E} and x; = x7, and we get stability (hard part), refinement,
and compatible with equality, shufflable properties.

4 Restricted intersection problems

Definition 5. Let L be a set of nonnegative integers. The family F is L-intersecting, if
|E N F| € L for every pair F, F of distinct members of F.

Problem 6 (Restricted Intersection Problem - uniform case). Let L be a set of nonnegative
integers and k£ > 1. What is the maximum number of members in a k-uniform L-intersecting
family of subsets of a set of n elements?

Problem 7 (Restricted Intersection Problem - nonuniform case). Let L be a set of nonneg-
ative integers. What is the maximum number of members in an L-intersecting family of
subsets of a set of n elements?

Theorem 8 (Ray-Chaudhuri — Wilson Theorem). Let L be a set of s integers and F an
L-intersecting k-uniform family of subsets of a set of n elements, where s < k. Then:

7| < (Z)

Theorem 9. For every k > s > 1 and n > 2k?, there exists a k-uniform family F of size
> (n/2k)® on n points such that |E N F| < s — 1 for any two distinct sets F, F' € F.

Proof. Let p be the greatest prime < n/k; this way n/(2k) < p < n/k. Fix a k-subset A of
F,. (k < pbecause n > 2k?*) Let X be an n-set containing A x F,,. For a function f: A — F,,
the graph G(f) = {(§, f(&)) : £ € A} is a k-subset of X.
Our set system will consist of the graphs of the polynomials of degree < s — 1 over [,
restricted to A. It is easy to see that for two different polynomials of degree< s — 1, their
graphs will have at most s — 1 points in common. The number of polynomials in question is
p° > (n/2k)°.
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