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1 The Weisfeiler-Leman Algorithm
The Weisfeiler-Leman (WL) algorithm is an isomorphism test. It iteratively computes an
isomorphism-invariant coloring of tuples of vertices of a graph.
Two graphs are distinguished, and hence non-isomorphic, if they have different colorings.
there is a well known logical characterisation:

The iteration number of k-WL, i.e., the number of iterations the algorithm requires to
stabilize, this is trivially at most nk − 1.

Let χ1, χ2: V k → C be colorings of k-tuples over a finite set V where C is some finite set
of colors. The coloring χ1 refines χ2, denoted χ1 ⪯ χ2.

Let us fix k ≥ 2 and consider a finite relational structure A, let v = (v1, . . . , vk) ∈ V k. We
define the atomic type of v, denoted by atpA(v), to be the isomorphism type of the ordered
substructure of A induced by {v1, . . . , vk}.

Next, we describe a single refinement step of k-WL. Let V be a finite set and let χ : V k →
C be a coloring of all k-tuples over V . We define the coloring stepk(χ):

stepk(χ)(v) := (χ(v),Mχ(v))

For all v = (v1, . . . , vk) ∈ V k where Mχ(v) := {{(χ(v[w/1]), . . . , χ(v[w/k]))|w ∈ V }} and
v[w/i] := (v1, . . . , vi−1, w, vi+1, . . . , vk) is the tuple obtained from v by replacing the i-th
entry by w.

We define the initial coloring computed by k-WL on the structure A via χ
(0)
k [A](v) :=

atpA(v) for all v ∈ (V (A))k.

For r ≥ 0 we set χ
(r+1)
k [A] := stepk(χ

(r)
k [A]). Since χ(r+1)k[A] ⪯ χ(r)k[A] for all r ≥ 0,

there is some minimal s such that:

χ
(s)
k [A] ≡ χ

(s+1)
k [A] ≡ χ

(∞)
k [A]
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2 Upper bound
Theorem 1. For all k ≥ 2, the k-dimensional WL algorithm stabilizes after O(knk−1log n)
refinement rounds on all relational structures A of arity at most k.

Proven for an algorithm at least as strong as WL.

• P a partition of V k. P is compatible with equality if for all P ∈ P , for all tuples
(v1, . . . , vk), (v′1, . . . , v′k) ∈ P , and all i, j ∈ [k] it holds that:

vi = vj iff v′i = v′j.

This is a condition on the size of the isomorphism.

• Moreover, P is shufflable if for every π : [k] → [k] and every P ∈ P it holds that:

P π := {(vπ(1), . . . , vπ(k))|(v1, . . . , vk) ∈ P} ∈ P

Stronger than permutation, also hierarchy of complexity.

The refinement process of k-WL are shufflable and compatible with equality.

Theorem 2. Let V be a finite set of size n := |V |, let χ0 . . . , χℓ : V
k → C be a sequence of

colorings such that:

1. χt is shufflable and compatible with equality for all t ∈ [0, ℓ],

2. stepk(χt−1) ⪰ χt for all t ∈ [ℓ], and

3. χt−1 ≻ χt for all t ∈ [ℓ].

Then ℓ ≤ 2nk−1(⌈klog n⌉+ 1) = O(knk−1log n).

Note that Theorem 1 follows from Theorem 2 by observing that all colorings χ
(i)
k [A]

obtained from the refinement process of k-WL are shufflable and compatible with equality.

3 A long sequence of stable coloring
Theorem 3. Suppose n ≥ 2k2 and let V be a set of size |V | = 2n, then there is a sequence
of colorings χ0 . . . , χℓ : V

k → C of length ℓ ≥ ( n
2k
)k−1 such that:

1. χt is shufflable and compatible with equality for all t ∈ [0, ℓ],

2. χt is stable for all t ∈ [0, ℓ], and

3. χt−1 ≻ χt for all t ∈ [ℓ].

Couple remarks on the previous theorems:

• Tight up to a factor O(log n).

• Shows the limit of the setting, and ”parallelization arguments”.
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A k-uniform set family (over U) is a collection F of k-element subsets of U .
From F on n points, we induce a coloring χF on 2n elements, where V = U×{0, 1}, as follows:

((u1, a1), . . . , (uk, ak)), ((u′
1a

′
1), . . . , (u

′
k, a

′
k)) are the same color iff:

(A) ui = u′
i for all i ∈ [k],

(B) (ui, ai) = (uj, aj) ⇔ (u′
i, a

′
i) = (u′

j, a
′
j) for all i, j ∈ [k], and

(C) if {u1, . . . , uk} ∈ F , then
∑

i ai ≡
∑

i a
′
i mod 2.

Theorem 4 ([Babai and Frankl, 1988]). For every n ≥ 2k2 there exists a k-uniform set family
F over a universe U of n points such that:

1. |E1 ∩ E2| ≤ k − 2 for all distinct E1, E2 ∈ F , and

2. |F| ≥ ( n
2k
)k−1.

We set Ft := {E1, . . . , Et} and χt = χFt , and we get stability (hard part), refinement,
and compatible with equality, shufflable properties.

4 Restricted intersection problems
Definition 5. Let L be a set of nonnegative integers. The family F is L-intersecting, if
|E ∩ F | ∈ L for every pair E, F of distinct members of F .

Problem 6 (Restricted Intersection Problem - uniform case). Let L be a set of nonnegative
integers and k ≥ 1. What is the maximum number of members in a k-uniform L-intersecting
family of subsets of a set of n elements?

Problem 7 (Restricted Intersection Problem - nonuniform case). Let L be a set of nonneg-
ative integers. What is the maximum number of members in an L-intersecting family of
subsets of a set of n elements?

Theorem 8 (Ray-Chaudhuri – Wilson Theorem). Let L be a set of s integers and F an
L-intersecting k-uniform family of subsets of a set of n elements, where s ≤ k. Then:

|F| ≤
(
n

s

)
Theorem 9. For every k ≥ s ≥ 1 and n ≥ 2k2, there exists a k-uniform family F of size
> (n/2k)s on n points such that |E ∩ F | ≤ s− 1 for any two distinct sets E,F ∈ F .

Proof. Let p be the greatest prime ≤ n/k; this way n/(2k) < p ≤ n/k. Fix a k-subset A of
Fp. (k ≤ p because n ≥ 2k2) Let X be an n-set containing A×Fp. For a function f : A → Fp,
the graph G(f) = {(ξ, f(ξ)) : ξ ∈ A} is a k-subset of X.
Our set system will consist of the graphs of the polynomials of degree ≤ s − 1 over Fp,
restricted to A. It is easy to see that for two different polynomials of degree≤ s − 1, their
graphs will have at most s− 1 points in common. The number of polynomials in question is
ps > (n/2k)s.
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