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1 Probabilities on Graphs [3]
We consider undirected graphs. By GRn we denote the set of all graphs with the universe
{0, . . . , n − 1}. The number of undirected graphs on {0, . . . , n − 1} is |GRn | = 2(

n
2
). Let P

be a property of graphs. We define:

µn(P) =
|{G ∈ GRn |G has P}|

|GRn |

The asymptotic probability of P , if it exists, is denoted by:

µ(P) = lim
n→∞

µn(P)

We give a couple of examples:

• P := ”there are no isolated nodes”:

µn(P) ≤ n 2(
n−1
2
)

2(
n
2
)

→ 0

• P := ”the graph is connected”:

µn(P) ≤
n−1∑
k=1

(
n
k

)
2(

k
2
) 2(

n−k
2
)

2(
n
2
)

→ 0

• P := ”the graph has an even number of nodes”:

µn(P) =

{
0 if n odd
1 if n even

Therefore µ(P) does not exist.

2 0-1 laws [1]
We say that a logic has the zero-one law if for every property P definable in the logic, either
µ(P) = 0, or µ(P) = 1.

Theorem 1. First order logic has the has the zero-one law.
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2.1 Extension axioms
The proof relies on the extension axioms, defined as:

EAk,m : ∀x1, . . . , xk

(∧
xi ̸= xj

)
⇒ ∃y

( ∧
y ̸= xi

∧
∧

i≤m E(y, xi)
∧
∧

i>m ¬E(y, xi)

)
(1)

Claim 2. µ(EAk) = 1 for all k.
Proof. We show that µ(¬EAk) = 0 for all k. Calling X and Y the two sets of size k, we
count how we can choose X and Y for a graph of size n:

• We can choose X in
(
n
k

)
different ways and Y in

(
n−k
k

)
different ways.

• There are 2(
2k
2
) ways to put edges on X ∪ Y and 2(

n−2k
2
) ways to put edges on X ∪ Y .

• For each element z ∈ X ∪ Y , we can put edges between z and the 2k elements of X ∪Y
in every possible way except if z is connected to every member of X and not to any
member of Y , which is one way. So in total we get (22k − 1)n−2k different ways to
connect the partition.

So

µ(¬EAk) ≤
(
n−k
k

)
2(

2k
2
)2(

n−2k
2
)(22k − 1)n−2k

2(
n
2
)

→ 0

We get several corollaries:

• µ(¬EAk,m) = 1 for m ≤ k.

• Almost all graphs satisfy EAk.

• Since EAk := EA2k,k implies EAk,m for m ≤ k, almost all graphs satisfy EAk,m.

2.2 Pebbling game
Definition 3 (EF k-pebbling game). The game EFk(A,B) is played on two relational struc-
tures A and B. There are two players, Spoiler and Duplicator, and k pairs of pebbles (ai, bi)
for i ∈ [k]. We denote the positions by a⃗ = (a1, . . . , ak), b⃗ = (b1, . . . , bk). Each move goes as
follows:

• Spoiler chooses a structure, A or B, and a number 1 ≤ i ≤ k.

• Spoiler places the pebble ai on some element of A.

• Duplicator responds by placing bi.

Duplicator has a winning strategy if he can ensure that after every round ((⃗a, c⃗A), (⃗b, c⃗B)) is
a partial isomorphism between A and B, where c⃗ denotes the constants of the language.
Theorem 4. [2] The following are equivalent:

• A and B satisfy the same sentences of FO using at most k variables.

• Duplicator has a winning strategy in the EFk(A,B) pebbling game, and we write
A ≡k B.
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2.3 0-1 Law on first order logic
Theorem 5. Let G1, G2 be finite graphs such that G1, G2 verify EAk. Then G1 ≡k G2.

Proof. The language of graphs is only composed of the E binary relation, without any con-
stant. Therefore a partial isomorphism only looks at the edge relations between the nodes
picked.
Since EAk := EA2k,k implies EAk,m for m ≤ k, Duplicator can continue indefinitely to match
Spoiler’s choice, so G1 ≡k G2.

Now we prove that First Order logic has the zero-one law property:

Proof. Let ϕ be a FO formula with k variables.

• Suppose G is a graph with at least 2k elements satisfying both ϕ and EAk. For any G′

that satisfies EAk and has at least 2k elements, Theorem 5 imply that G ≡k G′ and
then Theorem 4 shows that G′ satisfies ϕ. Therefore, µ(ϕ) ≥ µ(EAk) = 1.

• Conversely, assume that no graph satisfying EAk of size at least 2k also verifies ϕ.
Then µ(ϕ) ≥ µ(¬EAk) = 0.

3 Additional results

3.1 Graphs up to isomorphism
Let νn be the probability measure induced on the set of graphs of size n where each isomor-
phism class is represented by only one of its member.

Theorem 6. For ϕ is a first-order sentence, then νn(ϕ) converges as n → ∞, and limn→∞ νn(ϕ) =
limn→∞ µn(ϕ).

3.2 Random graph
For an edge probability function p(n), we derived an induced sequence of probability spaces
based on G(n, p(n)).
The case p = 1/2 corresponds to part 2.

Definition 7. We say that an edge relation p(n) satisfies the zero-one law if, for every first
order sentence ϕ:

lim
n→∞

P [G(n, p(n)) ⊨ ϕ] ∈ {0, 1}

Theorem 8 ([5]). If 0 < α < 1 and α is irrational then p(n) = n−α satisfies the zero-one law.

3.3 Other random graph models
Theorem 9 ([4]). Let Gn be a random graph following a Barabasi Albert model of parameter
m. Then Gn follows a FOm−2 convergence law.
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