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Abstract

This thesis takes an algebraic approach to the study of neural networks with Relu activations.
Through the characterization of tropical hypersurfaces associated to networks, it may be possible
to better understand performances and the training efficiency on different architectures. It gives
indications on how pick an architectures regarding the expressivity or the types of hypersurfaces
and frontiers of decision that the networks aims at modeling.

1 Introduction

Tropical geometry is a recent subfield based on a max plus algebra. Recently its link with neural
networks has been formalized by Zhang et al. [16]. This thesis aims to highlight the links between
neural networks and tropical geometry. It offers a first implementation of these ideas and presents
some results from this rapprochement.

First this thesis shows the link between neural networks and tropical algebra and its consequences
on the complexity of decision boundaries. Then is presented some algebraic theory to better under-
stand the geometric varieties involved and on their computer representation. Finally, some results
from the algebraic approach are presented as well as an example of a practical application to a
classification problem.
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Figure 1: Example of a classification problem, a 2d donut

2 Tropical Algebra and neural networks

2.1 Introduction to neural networks

In this part we want to show that under certain assumptions, there is an equivalence between a neu-
ral network and a tropical rational function. We will only consider fully connected neural networks.
A neural network is the successive composition of linear functions and nonlinear functions called ac-
tivations. These activation functions are fixed and the training of the network consists in optimizing
an objective function by modifying the linear functions.
A network nu of depth L is therefore written Rn1 → RnL :

ν(L) = σ(L) ◦ ρ(L) ◦ σ(L−1) ◦ ... ◦ σ(1) ◦ ρ(1)

Where ρ are the linear functions and σ the activations.

Each couple (ρ(l), σ(l)) is called a layer. ρ(l) : Rnl−1 → Rnl is defined by :

ρ(l)(x) := A(l)x + b(l)

Where A(l) ∈ Rnl×nl−1 are called the weight matrices, b(l) ∈ Rnl the biases.

One of the most popular activations is Relu, rectified linear unit which equals to max(0, .) fig. 2.
he first transformation can be written by applying the max component by component σ(ρ(x)) =

max(Ax + b, 0).
Subsequently σ will be the function max(0, .) and can be applied in any dimension by applying the
transformation max(0, .) component by component.

2.2 The tropical semi ring

Tropical algebra is the study of the semi-ring (R ∪ {−∞} ,⊕,�).

In the rest of the paper we will use T := R ∪ {−∞}
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Figure 2: Relu Activation

We define two associative operations on T : x⊕ y := max(x, y) and x� y := x+ y

Tropical division is also defined � : x, y → x− y

This space extends by taking addition, multiplication and multiplication by a scalar in larger
dimension with a component by component approach:

Td × Td → Td

x� y = xi � yi

Tropical power is written x�a := x� ...� x = a× x

We will simply write xa for tropical power when there is no ambiguity about the tropical nature
of the equation. Only integer powers will be considered.

We note that − infty and resp. 0 are the neutrals for oplus and resp. odot. And that
the structure defined is a semi-ring by the associativity, commutativity and distributivity of these
operators. The inverse for the addition is not defined.

2.3 Tropical polynomials and tropical rational functions

n dimension d, for a inNd, a tropical monomial, denoted xa, is an expression of the form:

xa = c� x a1
1 � ...� x ad

d

Td → T

A tropical polynomial f in athbbRd is the tropical sum, denoted
∑

of tropical monomials:

f(x) =
∑
a∈S

xa =
∑
a∈S

ca � xa11 � ...� x
ad
d

for S a finite subset of Nd, c reals, for all x of Rd.
A tropical rational function is the difference of two tropical polynomials:

F (x) = P1(x)− P2(x)
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Figure 3: Regression problem of the exponential function f(x) = 0⊕ (−6� x7)⊕ (−31� x17)

In the fig. 3 we show how we can use the space of tropical polynomials to approximate the ex-
ponential function.

These expressions and the subdivisions of the space they entail have been present for some years
in the field of machine learning.

The use of ’max’ activations is widespread in the machine learning community. Indeed, as it
is shown later, the choice of the tropical functions as basis of representation allows us to give an
equivalence between a tropical rational function and the Relu activation in the neural networks.

2.4 Tropical Rational Functions and Neural Networks

We set 3 conditions on the elements of the neural networks to obtain an equivalence with the tropical
functions :

(a) weight matrices are integer valued

(b) biases are real valued

(c) the activations are of type Relu

Proposition 2.1. Tropical characterization of layer-to-layer transformations in a neural network.
A neural network fulfilling the conditions (a) - (c) can be written as a tropical rational function.

Proof. Writing A(1) ∈ Zn2×n1 and b(1) ∈ Rn2 the matrices of weights associated with the first layer,

we break down A(1) in 2 matrices with positive coefficients : A(1) = A
(1)
+ −A

(1)
−

The output of the first layer is :

ν(1) = σ ◦ ρ(1)(x) = max(Ax + b,0) = max(A
(1)
+ x−A(1)

− x + b,0)

ν(1) = σ ◦ ρ(1)(x) = max(A
(1)
+ x + b, A

(1)
− x)−A(1)

− x

We then set the first member as F (1) and the second as G(1), we notice that F (1) and G(1) are
tropical polynomials.
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ν(1) = σ ◦ ρ(1)(x) = F (1)(x)−G(1)(x)

ν(1) is therefore a tropical rational function as difference of two tropical polynomials.
If at step l the neural network can be written as a tropical rational function:

ν(l) = σ ◦ ρ(l)(x) = F (l)(x)−G(l)(x)

Writing A(l+1) ∈ Znl+1×nl and b(l+1) ∈ Rnl+1 the matrices of weight associated with the l+ 1th
layer,

ρ(l+1) ◦ ν(l)(x) = H(l+1)(x)−G(l+1)(x))

ν(l+1) = σ ◦ ρ(l+1) ◦ ν(l)(x) = F (l+1)(x)−G(l+1)(x))

with :

H(l+1)(x) = A
(l+1)
+ F (l)(x) +A

(l+1)
− G(l)(x) + b(l+1)

G(l+1)(x) = A
(l+1)
+ G(l)(x) +A

(l+1)
− F (l)(x)

F (l+1)(x) = max(H(l+1)(x), G(l+1)(x))

And we get the following tropical equations for coordinates f
(l)
i , g

(l)
i and h

(l)
i of these matrices:

h
(l+1)
i =

nl+1⊙
j=1

f
(l)
j
a+i,j �

nl+1⊙
j=1

g
(l)
j
a−i,j � bi

g
(l+1)
i =

nl+1⊙
j=1

f
(l)
j
a−i,j �

nl+1⊙
j=1

g
(l)
j
a+i,j

f
(l+1)
i = h

(l+1)
i ⊕ g(l+1)

i

The next theorem follows from the previous proposition:

Theorem 2.2. Equivalence between neural networks and tropical rational function

(a) Given ν a neural network : Rd → R, ν is a tropical rational function if and only if ν verifies
(a) - (c)

(b) Given a tropical rational function ν = f � g, ν can be represented by a L layers network with

L ≤ max(dlog2(rf )e , dlog2(rg)e) + 2

writing rf and rg the number of monomials in f and g

A layer in a neural network corresponds to a couple (ρ, σ).

Proof. (a) The converse comes from the previous proposition. The implication follows the same
proof by construction as (b).
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Figure 4: Dome of f(x) = 0⊕ x7 �−6⊕ x17 �−31

(b) It is sufficient to build a neural network with each layer : f and g from the previous decompo-
sition. First is initialized a neural network for a tropical monomial, then a tropical polynomial
and finally a tropical rational function:

A tropical monomial can be written ρ(x) = bxa

If p and q two tropical polynomials are written with nets of lp and lq layers :

p = ρlpp ◦ σ ◦ ... ◦ σ ◦ ρ1p et q = ρlqq ◦ σ ◦ ... ◦ σ ◦ ρ1q

We can write p⊕ q with max(lp, lq) + 1 layers :

p⊕ q = σ ◦ (p− q) + σ ◦ q − σ ◦ (−q) = max(p, q)

By induction we conclude that p can be written with dlog2(lp)e+ 1 layers.

We can also write p� q with max(lp, lq) + 1 layers :

p� q = σ ◦ p− σ ◦ (−p) + σ ◦ (−q)− σ ◦ (−q) = p− q

So if f and g are two tropical polynomials composed of rf and rg monomials respectively, then
f � g in max(dlog2(rf )e , dlog2(rg)e) + 2 layers.

We associate with each polynomial f a dome which consists of all the points under the tropical
curve:

D(f) :=
{

(p, s) ∈ Rd+1|p ∈ Rd, s ∈ R, s ≥ f(p)
}

We will see that the dome of a tropical polynomial is related to its hypersurface.

Proposition 2.3. D(f) is a convex polyhedron of dimension d+ 1.
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Figure 5: Tropical hypersurface of f(x, y) = 4 + x+ y ⊕ 1 + 2y ⊕ 2x⊕ 5⊕ 5 + x⊕ 5 + y

Proof. D(f) is the intersection of a finite number of convex spaces of Rd+1 therefore is a convex
polyhedron.
Let p be a point s such that s > f(p), by definition of D(f) exists a ε > 0 such that (p, s) is
separated from ε or more from each facet corresponding to a monomial. So the center ball (p, s) of
radius ε is in D(f). D(f) and is of dimension d+ 1.

One of the problems of applying neural networks is the expressiveness of the selected family of
functions. One method to study these families of functions is to consider the dome and associated
hypersurfaces.

3 Hypersurfaces and linear regions

Definition 3.1 (Hypersurface). For a tropical polynomial of the form:

f(x) = c1x
α1 ⊕ ...⊕ cdxαd

The hypersurface is defined by:

T (f) :=
{
x ∈ Rd | cixαi = cjx

αj = f(x), αi 6= αj
}

Intuitively it corresponds to the points of change of linearity, or a shift from one monomial to
another.

Thus the tropical hypersurface divides the space into regions where the neural network behaves
as a linear function.

From a machine learning point of view, we want to be able to express the complexity of a neural
network, which corresponds to the number of linear regions that can be represented.

It is clear that these notions are related, indeed in a network of neurons, a change in linearity
indicates the presence of 2 linear regions.

In consequence, want to focus more specifically on these tropical objects.
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3.1 Transformation of hypersurfaces in a neural network

As we have explained, the transformations in a network of neurons are two in number: linear com-
bination and activations: Relu ie passage to max in our case.

The linear combination poses a problem for the study of hypersurfaces, indeed :
Let f1, f2 be tropical polynomials of Rd → Rd, writing

∑
the tropical sum, f1(x) =

∑
i x

a1
i ,

f2(x) =
∑
j x

a2
j , what to do with the classical sum f1(x)+f2(x) =

∑
i,j x

a1
i+a2

j ? To my knowledge,
there is no theorem for directly linking T (f1), T (f2) to T (f1 + f2).

One track one might explore is the development of these max. Noting that without prejudice
of any simplification, the tropical sum of two polynomials composed of p and q monomials gives a
tropical polynomial composed of p timesq monomials. In a neural networks, however, many classical
additions are made: :

Note that for a linear transformation of a layer of a neural network σ : Rl → Rt, for l and t
integer, applied to tropical polynomials composed of p monomials, then the image of these tropical
polynomials will be tropical polynomials of pl monomials! The complexity is exponential, we are
very quickly limited in the choice of neural networks that this method can describe.

For example, a network with latent spaces of dimensions 2 ∗ 4 ∗ 4 ∗ 1 can produce more than
109 monomials, which poses practical memory problems. Simplifications are possible (monomials
can be removed at each stage because they are never ”attained”, but this reduction is not significant.

One of the interesting ideas on the training of neural networks is that during a successful training,
with a suitable architecture, these monomials, and therefore the portion of the network that is not
used is relatively small. Starting from this idea of silent monomials and neurons, we can then better
design neural networks so as not to over-fit, and learn more about the training i.e the optimization
process of a network. This is an interesting research track that brings into play the combinatorics
resulting from convex optimization and geometry.

The approach by study of hypersurfaces seems inadequate. This is why many authors like Chang
and Al. [16] or Maragos and Al. [3] have chosen to study an object that can be related by duality
to the hypersurface: the Newton’s polytope.

3.2 Link between hypersurface and Newton’s polytope

We now want to prove the link between hypersurface and the Newton’s polytope.

Proposition 3.1. The tropical tropical hypersurface T (f) coincides with the image of the 2 codi-
mension skeleton of the D(f) dome in Rd following the orthogonal projection that removes the last
dimension.

Intuitively at each vertex of the projection of Newton’s polytope, we will be able to match a
convex cell in Rd i.e a zonotope where the neuron network will be linear. This bijection is very
interesting for the enumeration of linear regions.
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Proof. Each facet of the polyhedron D(f) corresponds to a tropical monomial. A dot p of Rd belongs
to the hypersurface if and only if there are two monomials of f which are equal and are worth p
f(p). It i;plies that p, f(p) in two facets of D(f).

Definition 3.2 (Newton’s polytope). The Newton’s polytope (extended) of a tropical polynomial
f is the convex hull of the points representing its monomials:

N (f) = conv
{

(ci, bi) ∈ Rd × R, i = 1, ..., d)
}

N (f) =

{
d∑
i=1

λi(̇ci, bi)|
d∑
i=1

λi = 1, 0 ≤ λi

}
We also define the subdivision induced by f , δ(f), writing UF for the upper convex hull:

δ(f) =
{
π(p) ∈ Rd | p ∈ UF (N (f))

}
We start by defining the Minkowski sum, which is widely used in geometry :

Definition 3.3 (Minkowski sum). The Minkowski sum of two sets P1 and P2 in Rd is the set:

P1 ⊕ P2 :=
{
x1 + x2 ∈ Rd | x1 ∈ P1,x2 ∈ P2

}
Where + is the sum component by component.

Proposition 3.2. Let f1, f2, ..., fd be tropical polynomials of Rd toR, then writing
⊕

for the
Minkowski sum and

∑
for the tropical sum:

T (

d∑
i=1

fi) =

d⋃
i=1

T (fi)

N (

d∑
i=1

fi) =

d⊕
i=1

N (fi)

Proof. The first proof is in [8] lemma 4.7.
For the second, it is sufficient to note that for 2 polynomials :

f1(x) :=
∑
i∈I

bi + xci , f2(x) :=
∑
j∈J

bj + xcj

f1(x) + f2(x) =
∑

i∈I, j∈J
(bi + xci) + (bj + xcj )

Definition 3.4 (Zonotope). A zonotope is a polytope of R that can be written as a Minkowski sum
of segments.
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We are interested in the representation by tropical polynomials of a network. In [16], Zhang
et al. proves that we can associate with each neural network with activation Relu a quotient of
tropical polynomials f and g of the form :

f(x1, ..., xd)

g(x1, ..., xd)

.

Definition 3.5 (Dual of a polytope). To each polytope we can associate a dual polytope, the idea
is that on each side we can associate a vertex and reciprocally.

When we tried to apply those transformations on the hypersurfaces layer-by-layer, we saw that
it lea to a dead end.

On the other hand, the study of Newton’s polytope (extended) is more promising :

Proposition 3.3. Let f be a tropical polynomial of T[x1, ..., xd] and a an integer :

N (fa) = aN (f)

Proposition 3.4. Let f, g be two tropical polynomials of T[x1, ..., xd]:

N (max(f, g)) = Conv(V(N (f)) ∪ V(N (G))

Proof. Knowing that for f : x→
∑
bi + cix ;

N (f) = Conv
{

(ci, bi) ∈ Rd × R, i = 1, ..., d)
}

We deduce the layer-to-layer transformations of the (extended) Newton’s polytope:

Proposition 3.5. Let A(1) ∈ Zn2×n1 and b(1) ∈ Rn2 the weight matrices of the first layer, A(1) is

decomposed into 2 positive coefficient matrices : A(1) = A
(1)
+ −A

(1)
−

We obtain the Newton’s polytopes associated with the transformations: N (f
(l)
i ),N (g

(l)
i ) and

N (h
(l)
i ) from layer to layer applying the transposition of tropical transformations on the Newton’s

polytope matrices :
The first polytopes are obtained directly:

(i) N (g
(1)
i ) and N (h

(1)
i ) are point

(ii) N (f
(1)
i ) is a line

(iii) N (g
(2)
i ) and N (h

(2)
i ) and the next are zonotopes defined by :

At step l ≥ 1 :

N (f
(l)
i ) = Conv[N (g

(l)
i ) ∪N (h

(l)
i )]

And Newton’s polynomials are weighted Minkowski sums :

N (g
(l)
i+1) =

nl∑
j=1

a−i,jN (f
(l)
j ) +

nl∑
j=1

a+i,jN (g
(l)
j )
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N (h
(l)
i+1) =

nl∑
j=1

a+i,jN (f
(l)
j ) +

nl∑
j=1

a−i,jN (g
(l)
j ) + bi ∗ ed+1

With ai,j the terms of the matrix A(l+1) ∈ Znl+1×nl and bi for b(l+1) ∈ Rnl+1 the weight matrices
associated to the l+ 1 th layer and ed+1 the vector unitary of the base with a 1 in d + 1 th position
: (0, .., 0, 1).
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Figure 6: The convex polytope N (g(2))

3.3 Application

The goal is to give a representation of the linear regions in the Relu layers and a representation of
the associated tropical varieties.

Consider for example a two-layer network, ν : R2 → R with n0 = 2 inputs, n1 = 5 for the first
layer and n2 = 1 as the dimension of the output. With the previous notations:

y = ν(1)(x) = σ ◦ ρ(1)(x) = max




−1 1
3 0
1 −2
2 1
3 −3


(
x1
x2

)
+


2
−1
2
0
−2

 , 0


ν(2)(y) = max(−3y1 + 2y2 + y3 − 2y4 − y5, 0)

The network satisfies criteria (a)− (c), by 3.5 so we can apply our tropical transposition.

We are looking to write ν(1) = f (1) � g(1) Under the form f (1)(x) = h(1)(x) ⊕ g(1)(x) where h
and g are tropical polynomials. To do this, separate:

ν(1) = max(Ax + b,0) = max(A
(1)
+ x−A(1)

− x + b,0)

then

g(1)(x) =


x1
0
x22
0
x32

 h(1)(x) =


2� x2
−1� x31
2� x1
x21x2
−2� x31


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Figure 7: The convex polytope N (h(2))

Figure 8: The convex hull of Newton’s polytope N (f (2))
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Figure 9: Projection by π of the convex hull of N (f (2))

In the same way we try to write f (2)(x) = h(2)(x)⊕ g(2)(x), by defining z = g(1) and y = f (1),
and we want ν(2) = f (2) � g(2) . The layer ν(2) can be written :

g(2)(x) = y31 � z22 � z3 � y24 � y5 = (2� x2 ⊕ x1)3 � 02 � x2 � (x21x2 ⊕ 0)2 � (−2� x31 ⊕ x32)

h(2)(x) = z31 � y22 � y3 � z24 � z5 = x31 � (−1� x31 ⊕ 0)2 � (2� x1 ⊕ x22)� 02 � x32

Now consider the tropical varieties associated with the neural network. We write f (1) = (f
(1)
1 , f

(1)
2 , f

(1)
3 , f

(1)
4 , f

(1)
5 )

and do the same for g(1) and h(1). We note that g
(1)
j and h

(1)
j are tropical monomials (of the form

cxa11 x2a2). Associated Newton’s polytopes, N (g
(1)
j ) and N (h

(1)
j ) are then points in R3.

As f (1) = h(1) ⊕ g(1), it follows N (f
(1)
j ) which is the convex hull of two points in R3, a line.

The lines N (f
(1)
j ) and the points N (g

(1)
j ) combine to form the varieties N (g

(2)
j ) and N (h

(2)
j ),

writing + the Minkowski sum, transposing the previous equations :

N (g(2)) = 3N (f
(1)
1 ) + 2N (g

(1)
2 ) +N (g

(1)
3 ) + 2N (f

(1)
4 ) +N (f

(1)
5 )

N (h(2)) = 3N (g
(1)
1 ) + 2N (f

(1)
2 ) +N (f

(1)
3 ) + 2N (g

(1)
4 ) +N (g

(1)
5 )

Finally N (f (2)) is the convex hull of the union of N (g(2)) and N (h(2)). The tropical hypersurface
T (ν) is then the skeleton of the dual of the projection removing the last coordinates of the upper
faces of N (f (2)) by the proposition 3.1.
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4 Computational geometry

In order to be able to represent and compute those surfaces, it is necessary to be able to determine
the convex hull of points. Another difficulty of the study of neural networks by transformations in
the tropical world is the possible large number of terms in the Minkowski sum.

The basic concept of computer representation is first discussed: triangulation.

4.1 Triangulation of polygons

In order to draw, represent or store surfaces or geometric objects, we use triangulation [15] and the
concept of simplex.

Definition 4.1 (simplex). A n simplex is the convex hull of a set of n + 1 points. When n + 1
points form a linearly independent set it is called a affine simplex.
A k face is the convex hull of k points.
A simplicial complex K is a set of affine simplexes such that if σ ∈ K, all faces of σ are in K and
for two elements σ1, σ2 of K then σ1 ∩ σ2 is empty or is both a face of σ1 and a face of σ2.
We call support of K, a simplicial complex, the following construction : |K| = ∪{σ | σ ∈ K}

Definition 4.2 (triangulation). We say that a set X is triangulable if there is a homeomorphism be-
tween X and a simplicial complex support |K|. The Homeomorphism and K are called triangulation
of X.

Before going further, it is interesting to mention a triangulation method that is widely used
: Delaunay’s triangulation. To build a geometric design, this triangulation provides a grid that
’maximizes’ the minimum angle. This triangulation is used to find accuracy of interpolations.[15]

Definition 4.3 (Delaunay’s triangulation). For a finite set of S points, a simplex is called Delaunay
if its vertices are in S and no point of S is inside the circumscribed sphere associated with these
vertices.
A triangulation is called Delaunay if all his simplexes are Delaunay.

There are several algorithms for triangulation in 3d: local enhancement, incremental construc-
tion ... [11]. It is also well known that the Delaunay triangulation of a discrete set of points is the
dual graph of the Voronoi diagram associated with P [15].

Let us now consider the calculation of the convex hull and the upper convex hull.

4.2 Convex hull and upper convex hull

We will have to compute the convex hull as well as the upper convex hull to be able to visualize the
hypersurfaces.
In this part one chooses to present 2 classical methods to determine the convex hull of a set of points
in 3d. Then is proposed a method to find the upper convex hull.

4.2.1 Incremental method

The idea is to calculate the convex hull on a growing set of points.
The algorithm can be written for n points p1...pn of a set S, to find H the convex hull:
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• initialize H = Conv(p1, p2, p3, p4), H is a collection of faces

• pour i = 5 à i = n :

– for each face f of H :

∗ compute the volume v of the tetrahedron formed by (f, pi)

∗ if v < 0 the tetrahedron is visible

– if no face is visible :

∗ pi is an interior point, to be ignored for the convex hull

– if not :

∗ find the edges of all visible faces

∗ for each e edge, construct the (e, pi) face and add it to H

∗ for each visible face f , delete f from H

A ’positive’ volume corresponds to a point behind ’the face, so external to H. The complexity
is O(nlog(n) and O(n2) in the worst case [2].

4.2.2 Quickhull Method

The Quickhull method is commonly used to calculate the convex hull, especially when the dimension
of the space is greater than three. The three-dimensional algorithm takes the ideas of incremental
construction (also called Beneath and Beyond) to be able to apply the Quickhull 2d method to a
larger dimension [1].

The Quickhull method in 2d is the following for a set of points S :

• Initialization: draw the line d connecting the two extreme points along the x axis

• We consider the same d and S as before:

– separate the S point in two subsets S1, S2 according to their placement relative to the
line d

– for each of the two subsets, find the farthest point on the line extending d

– draw the triangle that connects this point and the ends of d

– exclude from the calculation the points inside the triangle: it remains the set So

– repeat the operation with the two new lines d1 and d2 from the drawing of the triangle
and the set So

• when the points of So coincide with all the segments, the convex hull is obtained

The 3D method follows the same reasoning, but one must be careful to take into account the
vertices, edges, and faces correspondences in order to be able to update vertices, edges and faces
when one modifies the convex hull.

The algorithm can be written:

• Initialization: begin with a plane characterized by 3 points, we find the furthest point from
the plane of the triangle, with these 4 points we form a first convex hull H, we can exclude
from the calculation the internal points that are not ’visible’
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• Select the point furthest from the points already included. Add a new vertex to H as follows :

– Calculate the horizon: the edges that can create a positive volume, that is to say, which
can ’see’ the point: start with the nearest face and then to its neighbors

– Same process as with the incremental method

– Merge the coplanar faces

The complexity is in O(nlog(n)) in the general case.

4.3 Minkowski sum of convex polytopes

Our study of the hypersurface of decision pushes us to study the various transformations of the
Newton’s polytopes associated with the network.

As we saw in the previous part, the step that creates the most linear regions is the Minkowski
sum of several polytopes.

We must then find a way to effectively represent the resulting polytopes.
The main difficulties of the implementation are the number of vertices in the Minkowski sums

and the choice of the representation.
An important point is indeed the representation of Minkowski sums of convex polytopes: lattices,

vertices, etc. We choose to keep the representation by vertices, we then have a simplified version
through the convex hull.

One of the possible simplifications to reduce the number of vertices before passing to the convex
hull characterizing the convex polytope is to verify if the next vertex in the Minkowski sum is not
”inside the structure”, ie to verify that it is not in the convex hull of vertices already obtained.

To test this hypothesis [5] tests the existence of a separating hyperplane.

4.4 Polyhedra and polytopes

Definition 4.4 (Polyhedra). A polyhedron P in Rd is a convex set, intersection of a finite number
of half spaces H(A, b) with A ∈ Rd, b ∈ R :

H(A, b) =

{
x ∈ Rd,

d∑
i

aixi ≤ b

}

P = ∩nj=1H(Aj , bj)

Proposition 4.1 (Minkowski Weyl theorem). A polytope is a bounded polyhedron.

This theorem links convex hulls and the half spaces, and shifts the study from geometry to
optimization.
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5 Structure of polytopes

The aim of this part is to better understand the polytope object, the Weyl Minkowski theorem and
the link between convex polytopes and triangulation.

5.1 Introduction on optimization problems

Combinatorial optimization aims at optimizing an objective function subject to certain constraints.
We are particularly interested in the systems of equations in Rd under constraints,of the form :

i ∈ {1, ..., n} ,
d∑
j=1

aijxj ≥ bi

We are interested in the existence of a solution to this system.
One of the best-known ways to answer this question is Farkas’s lemma, which is based on the

polyhedra generated by these inequalities:

Proposition 5.1 (Non-homogeneous Farkas Lemma). In Rd, a system of inequalities,
a1

Tx ≥ b1, ...,an
Tx ≥ bn has no solution if and only if (λi)n real positives such as:

n∑
i=1

λiai = 0

n∑
i=1

λibi = 1

Proposition 5.2 (Homogeneous Farkas Lemma). a1
Tx ≥ 0, ...,an

Tx ≥ 0 implies cTx ≥ 0 i and
only if there are (λi)n real positives such as :∑n

i=1 λiai = c

We will prove those theorems a little later. Let’s go back to the polytopes.

5.2 Polytopes

Proposition 5.3 (Hyperplan of separation). Let X be a compact convex set of Rd, and z an element
outside X, then there are reals (ai)d and a strictly positive real ε such that:

∀x ∈ X,
d∑
i=1

aixi ≤ ε

d∑
i=1

aizi ≥ ε

the objects that will be studied with this property will be the polytopes, generated by a finite set
of points. They are therefore compact. We realize that without the closing property the theorem is
not verified.

18



Proof. The closing property allows us to state that there is at least one point x of X as ||x− z|| =
minx∈X = ||x − z|| > 0. The convexity of X forces its uniqueness: indeed if it is not unique let’s
call y ∈ X another point where this minimum is reached.
We are now looking at the line segment [xy]. It is included in X per convexity and the middle of
this segment will be at a distance of z strictly lower than ||x−z||, which contradicts the minimality
of the distance of z to X.

We now consider the center ball z and radius ||x − z||. We show that every X is on the same
side of the hyperplane, characterized by the vector ~n .
Indeed, let’s suppose y a point of the same side as the ball of the hyperplane. −→n ·−→y > 0 for example.
x being on this hyperplane, then

−−−→
y − x · −→n > 0. We deduce that the line segment [xy] intersects

the ball in at least one point outside of the hyperplane, written u.
By convexity the line segment [xy] is in X then u in X and ||u−z|| = ||x−z|| . This contradicts

the uniqueness of x.We obtain the result by translating the hyperplane of ||x− z||/2 along ~n.

This theorem will prove useful when performing the Minkowski sum of convex polytopes on the
vertices, to know if a potential vertex is already in the described convex region as shown in [5]. We
can thus reduce the number of vertices in the Minkowski sum.

Let’s now discuss three theorems about the combinatorics of convex sets :

Proposition 5.4 (Caratheodory). In Rd any element x ∈ conv(S) =
{∑k

i λixi,
∑
λi = 1, λi > 0

}
can be written as z =

∑p
i λixi, p ≤ d+ 1.

Proof. If k ≤ d+ 1, just apply the definition of the convex hull.
When k > d + 1, define xi

′
= (1,xi) on Rd+1, it follows k > d + 1 vectors in Rd+1, therefore exist

µi reals not all equals to zero such as: ∑
µixi

′
= 0

The first dimension being only ones follows
∑
µi = 0, and there is at least non zeros µ+ and µ−

of opposing signs. Therefore we can replace one of the xi with a linear combination of the other
elements. The result is obtained by recurrence.

Proposition 5.5 (Helly). Let in Rd, C a finite collection of convex sets such as any d + 1 sets of
elements of C has a non-empty intersection, then the intersection on all the sets in C is not empty.

Proof. Let’s start by showing the theorem for a collection of d+ 2 sets.
Let d + 2 convex sets, bu the hypothesis exists at least one point inside the intersections of the

d+ 1 sets that we write ai, i = 1...d+ 2 and ∆i the convex hull associated to d+ 1 of those points :

∆i = conv(a1, ...,ai−1,ai+1, ...ad+2)

Let the function f of distance to the convex hulls : f(x) = maxi(d(x,∆i))
Its minimum on conv(a1, ...,ad+2) , is attained on z. The goal is to show f(z) = 0, which is a

proof of the existence of a point belonging to the d+ 2 sets.
By application of the Caratheodory theorem, it is known that z belongs to one of the ∆i, writing

z ∈ ∆1 without loss of generality.
We are interested in the line segment [za1], and more precisely to f(xθ) = f((1− θ)z + θa1) for

θ ∈ [0, 1]. By convexity [za1] is in conv(a1, ...,ad+2).
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Reminding that a1 =
⋂d+2
j=2 ∆j .

Let πi(z) the projection of z on ∆i, by triangular inequality, follows for any i:

d(xθ,∆i) ≤ d((1− θ)z,∆i) + d(θa1,∆i) = (1− θ)d(z,∆i) ≤ (1− θ)f(z)

pour tout i = 2...d+2.

Therefore for any θ ∈ [0, 1] :

f(z) ≤ f(xθ) ≤ max[d(xθ,∆1), (1− θ)f(z)]

Inequality is simplified by f(z) ≤ d(xθ,∆1) by making θ converge toward 0, the theorem is
obtained for d+2 sets.

Note that this reasoning is valid for any size of collections of convex sets, and shows that the
non-empty intersection on n + 1 sets implies the non-empty intersection on n + 2 sets, for n > d.

The theorem is proved by recurrence.

Proposition 5.6 (Radon). In Rd any set A containing at least d+2 points admits a partition which
two parts X,Y verify conv(X) ∩ conv(Y ) 6= ∅.

Proof. Let A = {a1, ...,ad+2}, and the λi reals, we consider the system of equations in λ :

d+2∑
j=1

λjaj = 0

d+2∑
j=1

λj = 0

Having d + 1 equations for d + 2 unknowns, there is a non-null solution. We notice

I1 = {λi, λi > 0}

I2 = {λi, λi ≤ 0}

Choosing the partition X = {ai,∈ I1}, Y = {ai,∈ I2}

Then : ∑
i∈I1 aiλi∑
i∈I1 λi

=

∑
i∈I2 aiλi∑
i∈I2 λi

Which corresponds to a point of the convex hull of X which is also in the convex hull of Y.
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5.3 Weyl Minkowski theorem

Weyl Minkowski theorem states that every polytope is a bounded polyhedron.
To show this theorem we are interested in the constraint matrix, and its rank.
In Rd optimization problem constraints are :

i ∈ {1, ..., n} ,
d∑
j=1

aijxj − bi ≥ 0

That can be summarized to:
i ∈ {1, ..., n} , ci(x) ≥ 0

S the space described by these constraints, S 6= ∅.

We define three notions of ”corner points” of S :

Definition 5.1 (vertex of S). x is a vertex of S if there exists c ∈ Rd as : ∀y ∈ S \{x} , cTx > cTy.

The idea is that it is not possible to go further in the corner point direction direction.

Definition 5.2 (extreme point). Let S the convex set associated to these constraints, non-trivial.
x is an extreme point of S if it can not be written as a combination of two other points of S.

This definition hints at the convexity construction of S.

Definition 5.3 (Constraints matrix). Let Ax the constraints matrix in x, of shape n× d:

Ax =
{
ai|ai

Tx = bi
}

= {ai|i ∈ Ix}

with
Ix =

{
i|ai

Tx = bi
}

All these definitions are related.

Proposition 5.7. Let S be a polyhedron, the following three propositions are equivalent:

(i) x is a vertex of S

(ii) x is a corner point of S

(iii) Ax is of rank d

Proposition 5.8. x is an extreme point of S if and only if the rank of Ax is d.

The idea is to show that x is at the intersection of hyperplanes that correspond to linearly
independent constraints.

Proof. (i) =⇒ (ii) : by contradiction, let x a vertex of S associated to the direction c, suppose
there exists α ∈ [0, 1] and y, z ∈ S as : x = αy + (1 − α)z. Multiplying the inequality par cT we
deduce that x = y = z.

(ii) =⇒ (iii) : If x is an extreme point and the rank of Ax is inferior to d, there exists a vector
v non trivial as Axv = 0. Noticing that aTx− bi > 0 for i /∈ Ix, and aTv = 0 for i ∈ Ix therefore
there is a ε > 0 that verifies x+ εv ∈ S and x− εv ∈ S. It contradicts the definition of the extreme
point.
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(iii) =⇒ (i) : Picking c =
∑
Ix

ai, implies cTx =
∑
Ix

ai
Tx =

∑
Ix
bi.

Let y ∈ S, then cTy = ai
Ty ≤

∑
Ix
bi = cTx. The inequality implies ∀ai ∈ Ax,ai

Ty = ai
Tx,

Ax being of rank d, then x = y in Rd.

From this result is obtained a quick corollary :

Corollary 5.8.1. A polyhedron has a finite number of extreme points.

Proof. Each extreme point corresponds to an additional vector in constraint matrix of shape n× d,
then there are

(
n
d

)
possibilities to form a rank d matrix.

Getting closer to Minkowski Weyl theorem with the first implication:

Proposition 5.9. Let P a bounded polyhedron of vertices p1, ..., pn then P = conv(p1, ..., pn).

Proof. Recall that a polyhedron P in Rd is a convex set, intersection of a finite number of half
spaces. By convexity, comes directly conv(p1, ..., pn) ⊆ P . Let’s show that z in P implies z in
conv(p1, ..., pn). To do this let’s reason by induction on d− rang(Az).

If d− rang(Az) = 0, the previous lemma tells us that z is a vertex.

If d − rang(Az) > 0, there is a vector v non trivial as Azv = 0. Defining on P compact
k+ := max {k|z + kv ∈ P}, k− := max {k|z − kv ∈ P} attained in x and y. Considering x, writing
i0 the limiting index, where a new constraint is reached.

Then : Azx = Azz and ai0x = bi0
Noticing that Ax contains the same columns as Az but with ai0 . Therefore rang(Ax) >

rang(Ax).
By the same reasoning comes rang(Ay) > rang(Ax).
By convexity of S, if the result is valid for y and x, then it is for z.
The result is obtained by induction.

Now is shown the end of the Minkowski Weyl theorem for polytopes.

Proof. let P a polytope conv(x1, ..., xn). It remains to prove that P defines a polyhedron.
Choosing P of dimension d. For P different dimensions, the result is obtained by induction.
Let P ∗ =

{
y |xTy ≤ 1, ∀x ∈ P

}
. By construction P ∗ =

{
y |xTi y ≤ 1, ∀i

}
. Hence P ∗ is a

polyhedron.
P ∗ is called the polar dual. This transformation is particularly interesting when the polar bidual of
a set is it the set of origin.

For y in P ∗ : xTy =
∑
λix

T
i y ≤

∑
λi = 1

We therefore deduce that P ∗ =
{
y |xTi y ≤ 1, ∀i

}
. P ∗ is a polyhedron. S being of dimension d

then P ∗ is bounded. Applying a previous theorem, P ∗ is a polytope. To conclude, it remains to
show that P ∗∗ = P .
P ∗∗ =

{
y |xTy ≤ 1, ∀x ∈ P ∗

}
. Noticing x1, ..., xn are not in P ∗∗, P ∗∗ being convex is deduced

P ⊆ P ∗∗.

Assume x /∈ P , the goal is to show x /∈ P ∗∗, implying P = P ∗∗.
Considering the hyperplan of separation between x and P , C and δ with CTz < δ ∀z ∈ P and
CTx > δ.
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Without loss of generality we can transpose in the case where δ is worth 1, as we will justify in
the following part on the polar dual.

Therefore: CTz < 1 ∀z ∈ P , hence C ∈ P ∗. Knowing CTx > 1 then x /∈ P ∗∗.

5.4 Duality

What is duality in these spaces? We are familiar with dual spaces in functional analysis.
In this thesis it is chosen to study the dual of linear programming and the polar dual.

5.4.1 Polar duality

The goal of this part is the study of the polar dual and bidual. This transformation will then be
used in the proof of Farkas’ lemma.

Definition 5.4 (polar dual). In Rd the polar dual of a set P is defined by P ∗ =
{
y |xTy ≤ 1, ∀x ∈ P

}
.

We can also define the polar dual for a hyperplaneH which does not contain 0, ifH = {x|cx = 1},
then the dual of H is c.

Definition 5.5 (polar bidual). P ∗∗ =
{
c |xTy ≤ 1, ∀x ∈ P =⇒ cTy ≤ 1

}
.

The bidual appears as the intersection of all the half spaces that verify on P ∪ 0,
{
xTy ≤ 1

}
.

From the previous part is quickly obtained a property and a theorem :

Proposition 5.10. P ∗ is a close convex containing 0.

Theorem 5.11. P = P ∗∗ if and only if P is a closed convex containing 0.

Proof. The ideas have already been implemented in the proof of Minkowski Weyl’s theorem. The
first inclusion is trivial. The second is based on the theorem of the separation hyperplane previously
shown, which is a corollary of Hahn Banach’s theorem. The Hahn Banach separation theorem is
presented in the appendix.

0 must belong to the initial set, therefore the changes necessary about the initial space when it
is applied to the polytope in the proof of the Minkowski Weyl theorem.

Here are some remarkable properties:

• The unit ball of ldp : Bdp =
{
x ∈ Rd;

∑d
i=1 |xi|p ≤ 1

}
, if p ≥ 1, 1p + 1

q = 1 verify :

(Bdp)∗ = Bdq

• 0 ∈ int(P ) =⇒ P ∗ bounded, P bounded =⇒ 0 ∈ int(P ∗)

• Let P a polytope defined by P = conv(V ), V ∈ Rd×n, then P ∗ = {x|xV ≤ 1}

• if P = {x|Ax ≤ 1} is bounded, then P ∗ = conv(AT )

Proof. • follows from Holder inequality
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• B(0, r) ⊂ P =⇒ P ∗ ⊂ B(0, r)∗ = B(0, 1/r)

• let V be a set of n points in Rd, let x ∈ Rd, xV ≤ 1 if and only if xy ≤ 1 ∀y ∈ P by using
the definition of the convex hull

• this proposition is deduced from the two previous ones and Farkas lemma, the proof is devel-
oped in the appendix

5.5 Proof of Farkas lemma

The homogeneous Farkas lemma is :

Theorem 5.12 (homogeneous Farkas lemma). a1
Tx ≥ 0, ...,an

Tx ≥ 0 impliescTx ≥ 0 if and only
if there exists (λi)n reals positives as:

n∑
i=1

λiai = c

Proof. The first direction is trivial.
For the second, if c /∈ Cone(A), then cTx < 0 is not possible. Let d ∈ Rd with :

dTx > δ ∀x ∈ Cone(A)

dT c < δ

Through the hyperplan of separation, there is δ < 0 because 0 ∈ Cone(A). Taking for example
1
εa1 ∈ Cone(A), then dTa1 > −ε ∀ε > 0, and therefore dTa1 ≥ 0, which gives cTx < 0 impossible.

Theorem 5.13 (non homogeneous Farkas lemma). In Rd, a system of inequalities,
a1

Tx ≥ b1, ...,an
Tx ≥ bn does not have a solution if and only if there is are(λi)n reals positives as:

n∑
i=1

λiai = 0

n∑
i=1

λibi = 1

Proof. The first way is self evident. The second comes from the Fourier Motzkin elimination process
(detailed in the appendix), en normalizing the λ coming from the process.

To those theorems is preferred a more elegant version and a proof using the idea of polar duality
:

Theorem 5.14 (Farkas lemma). Let g, f1, ..., fn linear functions from Rd to R, there is an equiva-
lence between :

g ∈ Cone(f1, ..., fn)

n⋂
i=1

{fi(x) ≥ 0} ⊂ {g(x) ≥ 0}
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Another interesting formulation used in [10] is worth mentioning, writing −1 the function that
outputs −1:

Theorem 5.15 (Farkas lemma). Let f1, ..., fn linear functions from Rd to R, there is an equivalence
:

−1 ∈ Cone(f1, ..., fn)

n⋂
i=1

{fi(x) ≥ 0} = ∅

Proof. The direct way is straightforward.
For the indirect way, let fi(x) = yi

Tx + ai and zi = (yi, ai) in Rd+1.
Writing A∗ =

{
x|xTy ≥ 0 ∀y ∈ A

}
It is the dual for the cones.

Verifying that {z1, ...,zn}∗ ⊂ en+1
∗.

Therefore en+1 ∈ Cone(z1, ...,zn) and then there is λi ≥ 0 tels que
∑
i λifi = 1.

Easily follows −1 ∈ Cone(f1, ..., fn) from the hypothesis.

A possible application : another proof of Helly’s theorem using Farkas’ lemma and Caratheodory
s theorem. More details can be found in the appendix.
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6 Number of linear regions in neural networks

Are now presented some results from the tropical approach applied to neural networks [16] and a
result from polyhedron theory [13] regarding the number of linear regions in a neural network.

6.1 Tropical approach

The tropical approach makes it possible to apply theorems of combinatorics in order to better un-
derstand neural networks. The study of polytopes allows to obtain a result on the sum of Minkowski
[7],

Theorem 6.1 (Gritzmann Sturmfels). Let P1, ...Pk be polytopes in Rd, let m be the number of
edges of {P1, ...Pk} not parallel, then the number of vertex in the Minkowski sum of those polytopes

:
⊕k

i=1 Pi is less than 2
∑d−1
j=0

(
m−1
j

)
.

This theorem can be applied to zonotopes (which are Minkowski sums of line segments).

Corollary 6.1.1. Let P ∈ Rd+1 a zonotope from the sum of m line segments P1, ..., Pm, let π :
Rd+1 → Rd deleting the last coordinate then in the general case, P has

∑d
j=0

(
m
j

)
vertices in its

convex hull. If the line segments are parallel or some vertices are trivial,this value becomes an upper
bound.

Proof. Let V1 and V2 be the set vertices of the lower and upper convex envelopes of P , next to the
projection π : Rd+1 → Rd which removes the last component. According to the previous theorem
6.1 , P has n1 vertices:

n1 = 2

d∑
j=0

(
m− 1

j

)
By property of the zonotopes we know that V1 and V2 have same cardinal and by definition of

the convex hull |V1 ∪ V2| = n1.

Considering P ′ the projection by π of P into Rd which removes the last component. P ′ is a
zonotope of dimension d because is generated by m line segments not 2 per 2 parallel. By applying
the previous theorem P ′ to n2 vertices :

n2 = 2

d−1∑
j=0

(
m− 1

j

)
For any v vertex of P , π(v) is a vertex of P ′ if and only if v belongs to the upper convex hull

and the lower convex hull : |V1 ∩ V2| = n2.

Therefore : |V1| = n1−n2

2 =
∑d
j=0

(
m
j

)
.

This result can be applied to neural networks:

Theorem 6.2. Let ν : Rd → R a neural network satisfying the previous conditions (a) − (c), and

if nl ≥ d ∀l in [1, L], then ν has at most
∏L−1
l=1

∑d
i=0

(
nl

i

)
linear regions. And for n real as n ≥ nl ∀l

then the number of linear regions of ν is bounded in O(nd(L−1)).
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Proof. If L = 2 : it is the previous corollary 6.1.1.

For L ≥ 3 the proof is longer and is available in Zhang et Al. [16].

In the literature many methods exist to find higher bounds, such as sampling and using combi-
natorics.

6.2 Combinatorics approach

An interesting method for counting linear regions is based on an ’optimization’ formulation called
MILP: mixed integer linear programming, which is presented in Serra et al. [13]

The combinatorial idea is for a l layer composed of nl neurons to create a vector z
(l)
i , i ranging

from 1 à nl. For a neuron i from layer l, z
(l)
i is worth 0 or 1 upon the output of Relu ( 0 or not).

Let νl the output of l.

Realizing that each different activation scheme corresponds to a linear region, possibly different
from the previous ones, it is possible to deduce a ’classical’ upper bound present in many works, by
limiting by 2nl the number of linear regions created by a layer of nl neurons [12].

Keeping the l notation for the layers (ranging from 1 to L), i for the neurons (ranging from 1 to
nl); at the lieth layer, the network can be described by the system of equations:

1. Alip
l−1 + bli = pli

2. pli = hli − h
l

i

3. hli ≤Mzli

4. h
l

i ≤M(1− zli)

5. hli ≥ 0

6. h
l

i ≥ 0

7. zli ∈ {0, 1}

The insertion of the positive constant M is a fictional constraint imposed on the network in order
to limit the space of the solutions.

Theorem 6.3. If |Aliνl−1 + bli| ≤ M for any acceptable value of νl−1, the formulation under con-
straints (1)− (6) transforms x ∈ Rn1 in ν(x) ∈ RnL

Proof. The proof by recurrence relies on network structure, the system of equations can be trans-
posed. For a i neuron of the layer l :

If Aliν
l−1+bli > 0, (1)and(2) give hli−h

l

i > 0, (5), (6) and (7) implies zli = 1 and then Alip
l−1+bli =

pli, therefore by recurrence pli = νli .
The same reasoning is used in cases where Aliν

l−1 + bli < 0 et Aliν
l−1 + bli = 0
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To count the number of linear regions, Serra et al. [14] counts the solutions using a ’one-tree’
method presented in Danna et al. [4].

These two methods show how the study of polytopes and linear programming make it possible
to better understand neural networks.

7 Exploration, study of an application

7.1 Problem description

The 2 dimensions classification problem is defined as: class 0, in purple on fig. 10 corresponds to a
donut (surface between 2 ellipses), class 1 in yellow represents the rest of the space. This figure is
obtained by randomly sampling points in a grid and coloring each point according to its position.

The goal is to train neural networks of different architectures (number and width of layers) and
to study the decision boundaries as well as the tropical varieties associated with these networks.

Figure 10: Example of classification problem in donut 2d

7.2 neural networks

Comparing three types of architecture :

1. networks with Relu activations composed of one hidden layer of width h (latent space dimen-
sion) R2 × Rh × R.

2. networks with Relu activations composed of two hidden layers of width h R2 × Rh × Rh × R.

3. a network with Maxout activations composed of one hidden layer. Maxout [6] is a type of
activation who does ’max’ between several linear combinations of the inputs.
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For these 3 architectures, the inputs will be coordinates of the plane (dimension 2) and the
output will be the class (0 or 1, in dimension 1)

The networks are trained and is measured the accuracy, between 0 and 1, which corresponds to
the number of well classified points on the total number of points. fig. 11.

Figure 11: Networks accuracy during training

7.3 Decision frontiers, study of the tropical varieties

From the neural network, it is easy to display the following graphs :

1. the graph of the decision boundary, ie the line segments that separate the two classes. They
are obtained simply by testing the network on a grid.

2. the points of discontinuities in the network: that is to say the changes of activation patterns,
as described in Serra et al. [14]

7.4 Tropical varieties
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Figure 12: δ(f) for a network with 1 hidden layer, of width h = 10 at different steps of training

Figure 13: δ(f) for a network with 2 hidden layer, of width h = 4 at different steps of training
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8 Conclusion

Thesis has shown that neural networks can be considered as tropical varieties with multiple fol-
lowing properties. Thus all the problems concerning the interpretation, the training and the depth
and length of the architecture of a neural network can be studied in terms of hypersurfaces studies
polytopes.

It has also shown some of the limits of the representation of computer neural networks, where
rather simple architecture are difficult to process, even in the case of a two-dimensional input.

Some interesting possibilities for pursuing this approach include the interpretation of empirical
properties of neural networks concerning kernel, regularization or depth of networks.
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A Fourier Motzkin elimination

Consider the equations system in Rd under constraints :

i ∈ {1, ..., n} ,
d∑
j=1

aijxj ≥ bi

We are interested in the existence of a solution to this system. One of the most used methods is
the Gaussian elimination method, and its generalization the Fourier Motzkin method. the principle
consists in ”eliminating” a variable if there are two coefficients of opposite signs in an inequality.

Considering x1, writing 0 ≤ k1 ≤ k2 ≤ n the indexes of equations where x1 is positive between
1 and k1 and negative between k1 and k2.

Then for i1 ∈ {1, ..., k1}:

x1 ≥
bi1
ai11
−

d∑
j=2

ai1j
ai11

, ai11 > 0

For i2 ∈ {k1 + 1, ..., k2}:

x1 ≤
bi2
ai21
−

d∑
j=2

ai2j
ai21

, ai21 < 0

By combining these two equations the problem becomes :

i1 ∈ {1, ..., k1} , i2 ∈ {k1 + 1, ..., k2} ,
d∑
j=2

(
ai1j
ai11
− ai2j
ai21

)xj ≥
bi1
ai11
− bi2
ai21

i ∈ {k2 + 1, ..., n} ,
d∑
j=1

aijxj ≥ bi

Proposition A.1. System A has a solution if and only if system B has a solution.

Proof. The implication is given by the approach above.
Reciprocally, if (x2, ..., xm) solution of B, choosing x1 satisfying the condition above implies that

(x1, x2, ..., xm) is a solution of B. In the case k2 = 0, the theorem is trivial.

B Minkowski Weyl’s theorem for cones

In addition to the Minkowski Weyl theorem for polytopes, the result in the general case is proven
in[9] :

Definition B.1 (Polyhedral cone, conical hull). Un cône polyèdral est une intersection de demi
espaces vectoriels. ∀x ∈ Cone, λx ∈ Cone ∀λ ≥ 0.
The conical hull of a family of vectors is the set of linear combinations with positive coefficients of
these vectors.

Proposition B.1 (Minkowski Weyl’s theorem for cones). Every polyhedral cone is a conical hull
and vice versa.
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C On Farkas’s lemma

Farkas’ lemma is the analog in complex analysis of the following lemma in linear algebra:

Proposition C.1. Let g, f1, ..., fn be affine formes in Rd, there is an equivalence between :

g ∈ Cone(f1, ..., fn)

n⋂
i=1

ker(fi) ⊂ ker(g)
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D Diagram of neural networks

Figure 14: network with Relu activation composed of one hidden layer of width h

Figure 15: networks with Relu activations composed of two hidden layers of width h

E Code

The code is available on Git : https://github.com/ssggreg/Tropical-NN.
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