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Abstract—Ehrenfeucht - Fraı̈ssé (EF) games are a basic tool in
finite model theory for proving definability lower bounds, with
many applications in complexity theory and related areas. They
have been applied to study various logics, giving insights on
quantifier rank and other logical complexity measures. In this
paper, we present an EF game to capture formula size in counting
logic with a bounded number of variables. The game combines
games introduced previously for counting logic quantifier rank
due to Immerman and Lander, and for first-order formula size
due to Adler and Immerman, and Hella and Väänänen. The
game is used to prove the main result of the paper, an extension
of a formula size lower bound of Grohe and Schweikardt for
distinguishing linear orders, from 3-variable first-order logic to
3-variable counting logic. As far as we know, this is the first
formula size lower bound for counting logic.

Index Terms—Finite Model Theory, First-Order Logic, Count-
ing Logic, Succinctness

I. INTRODUCTION

Ehrenfeucht - Fraı̈ssé (EF) games [7], [11] are a basic tool of
finite model theory for proving definability lower bounds [6],
[26]. Combined with logical characterizations of complexity
classes, they provide a logic-based approach to problems in
complexity theory. The original form of EF games gives
bounds for quantifier rank in first-order logic but the games
have been extended and modified for many logics and formula
complexity measures. An EF game for formula size in first-
order logic (FO) is given by Hella and Väänänen [19], building
on Adler and Immerman [1]. In what follows, we refer to this
game as the HV-game.

Counting logic extends first-order logic by adding the count-
ing quantifier ∃≥k, and is frequently used in complexity theory
and combinatorics. Counting logic turns out to be relevant
for understanding the computational power of graph neural
networks (GNN) as well [12]. An EF game for distinguishing
graphs in counting logic with a bounded number of variables
is formulated by Immerman and Lander [22]. The game [22]
extends the basic EF setup by an additional phase in each
round involving the choice of subsets of the same cardinality
in the two structures.

Understanding formula size in counting logic with a
bounded number of variables would be useful, in particu-
lar, for a further analysis of the logical characterizations of

GNNS (Barceló et al. [2]). An EF game for this setup could
be a useful tool in this endeavor.

While the standard EF game is played on two structures, the
HV game is played on two sets of structures, referred to in this
paper as families. Grohe and Schweikardt [14] prove a formula
size lower bound for linear orders for the 3-variable fragment
of first-order logic, using this technique implicitly. They show
that every first-order 3-variable formula that distinguishes a
linear order of size n from a larger one has size Ω(

√
n). Their

proof is based on the notion of a separator and an involved
weighting technique, which allows for a refined analysis of
the syntax tree of a formula.

The separator and the weighting scheme are useful tools to
gauge the progress made in the subformulas of a distinguishing
formula. The proof is a detailed case analysis, with numerous
subcases required to deal with quantifiers.

In this paper, we formulate a game for capturing formula
size complexity for counting logic (Theorem V.1). The game is
a combination of the Immerman-Lander and Hella-Väänänen
games mentioned above. Restricted versions characterize for-
mula size for fragments of counting logic where the number
of variables and the counting rank are bounded.

The main result of the paper is that every 3-variable
counting logic formula with counting rank t distinguishing a
linear order of size n from a larger one has size at least

√
n/t

(Theorem VI.3). This result extends the result of [14] from
first-order logic to counting logic. The theorem is proved using
the game characterization. There is a simple distinguishing
formula of size n/t (Proposition VI.2). In addition, for the
case t = 1, i.e., for 3-variable FO, our result improves the
formula size lower bound of [14] from

√
n/2 to

√
n.

The lower bound proof uses modifications of the separators
and the weighting scheme. Some cases considered are identical
to [14]. The overall argument is, however, different. The
main difference is in the most technical part, the proof of
the quantifier case. We introduce gap sets and gap variables
(Definitions VII.8 and VII.9), which makes the argument
more similar to standard EF arguments and generalizes the
reasoning. The new proof of the FO case is somewhat simpler
than the original. A tree summarizing the proof structure and
the different cases is given in Fig. 4.



The paper is structured as follows. After reviewing related
work in Section II, we describe the counting and HV games
in Section III. Section IV describes the game and Section V
gives the correspondence between the game and counting logic
formula size. Section VI contains the application on linear
orders, with the proof of the lower bound in Section VII. Our
main technical contribution, the proof of the main Lemma on
counting quantifiers, is presented separately in Section VII-C.
Finally, Section VIII contains remarks and directions for future
research.

II. RELATED WORK

Counting logic has been discussed in several different forms.
Grohe [12] defines counting logic C as first-order logic (FO)
extended by counting quantifiers of the form ∃≥kx, and Cm as
its fragment using at most m variables. This is the counting
logic we consider in this paper. Previous work using this kind
of counting logic includes Immerman and Lander [22] and
Cai et al. [3]. Grohe [13], on the other hand, considers a
more powerful counting logic, where formulae can include
arithmetic operations on the number of elements satisfying a
formula (see also Kuske and Schweikardt [25]).

EF games using sets of structures, capturing the number of
quantifiers as opposed to quantifier rank, have been proposed
by Immerman [20]. These multi-structural (MS) games receive
increasing current attention (Fagin et al. [10], Carmosino
et al. [4], Vinall-Smeeth [32]). HV games are essentially
extensions of MS games, also modelling Boolean connectives
in the formulae.

A graph neural network (GNN) is a variant of neural
networks for machine learning problems involving graphs [31].
Such a network allows the use of deep learning techniques
to classify graphs (graph classification), or to classify the
nodes of a large graph (node classification). The computational
power of GNN is closely related to the Weisfeiler - Leman
(WL) graph isomorphism algorithm (Morris et al. [27], Xu
et al. [33]). The connection of the WL algorithm to counting
logic with a bounded number of variables ( [3], [12]) brings
these logics into the GNN picture as well. Barceló et al. [2]
gave logical characterizations in terms of counting logic with
a bounded number of variables using results established in
modal logic (Otto [29]). The complexity aspects of the char-
acterizations are not discussed in [2], and studying this aspect
(also pointed out in Grohe [12]) has been a motivation for the
topic of this paper (a brief further discussion is given at the
end of the paper).

The GNN characterizations of Grohe [13] establish a con-
nection of GNN to threshold circuits, a Boolean circuit model
of neural networks. The computational power of such circuits
corresponds to counting logic with an arbitrary built-in pred-
icate. Proving superpolynomial lower bounds for threshold
circuits is an open problem. Hajnal et al. [15], [16] prove an
exponential lower bound for depth-2 circuits with polynomial
weights, and so far this lower bound has not been extended to
either depth-2 with unrestricted weights or to higher depths.
The same papers prove a quantifier rank lower bound for

counting logic with successor as the built-in relation. Similar
results are also given in Etessami [8], [9]. Karchmer and
Wigderson [24] formulate an approach, related to HV games,
to proving monotone formula depth lower bounds. They also
prove a depth version of the Krapchenko formula size lower
bound. Krapchenko’s Theorem is proved in [19] as an
application of HV games.

General background for the topic of this paper is given
in Immerman [21], Ebbinghaus and Flum [6], Libkin [26],
Otto [28] and Hamilton [17].

III. BACKGROUND

In this section we introduce basic notation used in the paper
and review EF and HV games.

A. Basic definitions

1) Logics: We consider relational structures over a fixed
vocabulary.
Counting logic C is obtained by extending first-order logic
with counting quantifiers ∃≥kxϕ(x) and ∀≥kxϕ(x). Here
∃≥kxϕ(x) means that there are at least k distinct assignments
to the variable x that satisfy ϕ. Thus ∃≥k ϕ(x) is logically
equivalent to ∃x1 . . . ∃xk(

∧
i ϕ(xi) ∧

∧
i,j xi ̸= xj). The

quantifier ∀≥kxϕ(x) stands for ¬∃≥kx¬ϕ(x). In ∃≥kxϕ(x)
and ∀≥kxϕ(x), k is referred to as the counting rank of the
quantifier. The counting rank of a formula is the maximum
counting rank of its quantifiers.

As a counting quantifier can be replaced by standard
quantifiers, adding counting quantifiers does not change the
expressivity of first-order logic. It does, however, impact the
succinctness, the minimum size of formulae expressing a
property. In applications to finite model theory one usually
considers a sequence (An,Bn) of pairs of structures. Com-
plexity bounds to be proven are also functions of n. Note that
∀≥kxφ(x) is equivalent to ∃≥n−k+1xφ(x) for an n-element
structure. The transformation increases counting rank and thus
it cannot be used in formula size bounds for the bounded
counting rank case.

Parameters to be considered are the bound m on the number
of variables, the bound t on the counting rank, and the bound
w on the formula size. The fragment of counting logic of
formulae containing at most m variables and counting rank at
most t is denoted by Ctm.

2) Structures and Families: The universe of a structure A
is denoted by UA. We use xj , j ∈ N, to denote variables. A
variable assignment for a structure A is a finite partial mapping
α : N → UA. The finite domain of α is denoted by dom(α).

An interpretation is a pair (A, α). For a formula ϕ,
(A, α) |= ϕ means that the assignment α satisfies the
formula ϕ in the structure A, with dom(α) containing all
the j for which the variable xj is free in ϕ. A formula ϕ
distinguishes interpretations (A, α) and (B, β), denoted by
((A, α), (B, β)) |= ϕ, if (A, α) |= ϕ and (B, β) |= ¬ϕ.
A family AA,D is a set of interpretations {(A, αi)| i ∈ Γ}
where A and D = dom(αi) are fixed and Γ is some set.
When the context is clear, we drop the subscript. We write



(A,B) |= ϕ to express that for all (A, α) ∈ A, (A, α) |= ϕ
and for all (B, β) ∈ B, (B, β) |= ¬ϕ, and we say that ϕ
distinguishes (A,B). For a structure A, we denote by A0 the
family {(A, ∅)}, containing a single interpretation with the
empty assignment.

3) Operations: If α is an assignment on A, a ∈ UA and
j ∈ N, then α(a/j) is the assignment that maps j to a and
agrees with α otherwise.

Given a family A, a choice function is of the form F :
A → UA. The set of all choice functions on the family A is
denoted by FA. We define two operations on families [19].

• Change: Given a family A, a choice function F ∈ FA
and j ∈ N, the change operation on A with F for the
variable xj produces the family

A(F/j) := {(A, α(F (A, α)/j)) : (A, α) ∈ A}.

In the new family, the assignment to xj is changed based
on the choice function F . If j ̸∈ D then xj is a new
variable, and D is updated to D ∪ {j}. Thus a change
operation may either leave the domain unchanged or add
a new element to it.

• Multiplication: Given a family A and j ∈ N, the mul-
tiplication operation A for the variable xj produces the
family

A(∗/j) := {(A, α(a/j)) : (A, α) ∈ A, a ∈ UA}.

The new family consists of interpretations with xj as-
signed to all possible values in UA. Here, again, the
domain is either unchanged or a new element is added to
it.

4) Formula complexity: The size of a formula is defined
inductively: if ϕ is an atomic formula, |ϕ| = 1; and for FO
formulae ϕ, ψ, |¬ϕ| = |ϕ|+ 1; |ϕ ∨ ψ| = |ϕ ∧ ψ| = |ϕ|+ |ψ|;
|∃xjϕ| = |∀xjϕ| = 1+ |ϕ|. For the definition of the quantifier
rank of a formula, we refer the reader to [6].

B. Review of games

In this section we review the counting logic game [22] and
the first-order logic formula size game [19], referred to as the
HV game.

Definition III.1 (r-round EF m-pebbling game). The game
EF (A,B) is played on two relational structures A and B.
There are two players, Spoiler and Duplicator, and m pairs
of pebbles (ai, bi) for i ∈ [m]. It goes as follows:

• For r rounds:
– Spoiler picks a set of elements S1 of A or B and

a number i ∈ [m]. Duplicator selects a set S2

of elements of the same cardinality in the other
structure.

– Spoiler picks an element in S2 and Duplicator selects
an element in S1. The pebble ai (resp., bi) holds the
value of the element picked in A (resp., B).

• The r-round game ends in the position a⃗ = (a1, . . . , am),
b⃗ = (b1, . . . , bm). Duplicator wins if the mapping from

((⃗a, c⃗A) to (⃗b, c⃗B)) is a partial isomorphism between A
and B, where c⃗ denotes the constants of the language.

Theorem III.2. The following are equivalent:
• A and B satisfy the same sentences of Cm of quantifier

rank at most r.
• Duplicator has a winning strategy in the r-round m-

pebbling game.

A similar result holds for the bounded counting rank frag-
ment Ctm, by restricting the cardinality of the sets picked to
be at most t.
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Fig. 1. Two families, A = {(A, α)} and B = {(B, β)}, for the ∃z move
in the HV-game.

Definition III.3 (HV game for formula size on first-order
logic). The game HVw(A,B) is played on two families, A and
B, by Spoiler and Duplicator. The initial position is (w,A,B).
There are five possibilities for the continuation of the game:

• ¬-move: the game continues from the position (w −
1, B,A).

•
∨

-move: Spoiler chooses 1 ≤ u, v < w such that u+v =
w and partitions A to get C ∪D. Duplicator chooses the
next position as (u,C,B) or (v,D,B) .

•
∧

-move: similar but played on B.
• ∃-move: Spoiler chooses j ∈ N and a choice func-

tion F from FA. Then the game continues from (w −
1, A(F/j), B(∗/j)).

• ∀-move: similar but Spoiler chooses on B.
Spoiler wins if the game reaches a position (w,A,B) for w ≥
1 and there is an atomic formula that distinguishes A and B.
Duplicator wins if the game reaches a position (1, A,B) and
Spoiler does not win.

Theorem III.4. Let (A,B) be a pair of families, and let w
be a positive integer. Then the following are equivalent:

1) Spoiler has a winning strategy in the game HVw(A,B).
2) There is a formula ϕ of FO of size |ϕ| ≤ w such that

(A,B) |= ϕ.

Note that for any m ∈ N, one can define the variant of the
game HVmw (A,B), for which the moves ∃ and ∀ are restricted
by j ∈ {1, . . . ,m}. This game then characterizes FOm, the
fragment of FO logic,, with m variables. An illustration of the
∃-move is given in Fig. 1.

In Table I, we summarize the game characterizations dis-
cussed above and the game we are about to introduce.



TABLE I
COMPLEXITY CHARACTERIZING GAMES.

FOm Cm
Quantifier Rank [11], [7] EFm [22]

Size HVm [18] CSm (new)

IV. THE COUNTING LOGIC FORMULA SIZE GAME

In this section we define our game for counting logic
formula size. We start by extending the operations of the HV
game to this setting.

A. Extended operations

Definition IV.1. (k-choice function, selection) Given a family
A, a k-choice function is of the form F k = (F k1 , F

k
2 , . . . , F

k
k ),

where each F ki is a choice function, and for every (A, α) ∈
A the elements F ki (A, α) are pairwise distinct. The set of
all the k-choice functions on the family A is denoted by F kA.
A choice function F is a selection from F k if F (A, α) ∈
{F k1 (A, α), . . . , F kk (A, α)} for every (A, α) ∈ A. We say that
F is selected from F k.

Note that if F is a selection from F k, then the choices on
different interpretations may correspond to different F ki s. This
concept will be used to represent the Spoiler’s choices of one
interpretation from a set of interpretations. The extended set
of operations is the following:

• k-Change: Given a family A and j, k ∈ N, the k-change
operation associated to F k ∈ F kA produces the family

A(F k/j) := {(A, α(F ki (A, α)/j)) : (A, α) ∈ A, 1 ≤ i ≤ k}.

Thus each interpretation gives rise to k interpretations
composing the new family, where the assignments to xj
are changed based on the k-choice function F k.

• k-Multiplication: Given a family A and j ∈ N, the k-
Multiplication operation on A does the following: for
every k-choice function F k on A, a choice function F
is selected from F k. The union of the A(F/j) over
F k ∈ F kA forms A(∗k/j).
In other words, for every F k ∈ F kA and (A, α) ∈ A,
one interpretation is picked from {(A, α(F ki (A, α)/j)) :
1 ≤ i ≤ k} to be part of A(∗k/j). Thus each interpreta-
tion generates card(F kA) interpretations that compose the
family A(∗k/j).

B. Formula size game for counting logic

We are now ready to define the game for counting logic
formula size (referred to as the CS game for “counting size”).
It is presented in the Cm version as this will be used in the
rest of the paper. The new ∃≥k-move is illustrated in Fig. 2.

Definition IV.2 (CS game for formula size on counting logic).
The game CSmw (A,B) has two players, Spoiler and Duplicator,
m is the number of variables. A,B are two families with
dom(A) = dom(B) of size at most m. Suppose after p moves

we reach the position (w,A,B). Depending on Spoiler’s
choice, the game continues as follows:

• ¬-move: the game continues from the position (w −
1, B,A).

•
∨

-move: Spoiler first chooses numbers u and v such that
1 ≤ u, v < w and u + v = w. Then Spoiler partitions
A into a pair of families C and D. The game continues
either from the position (u, C, B) or from the position
(v, D, B) according to Duplicator’s choice.

•
∧

-move: Spoiler first chooses numbers u and v such that
1 ≤ u, v < w and u+ v = w. Then Spoiler turns B into
a pair of families C and D. The game continues either
from the position (u, A, C) or from the position (v, A,
D) according to Duplicator’s choice.

• ∃≥k-move: Spoiler chooses j ∈ [m], k ∈ N and a k-
choice function F k on A. For every k-choice function
Gk on B, Spoiler selects G from Gk. The union of the
B(G/j) over Gk ∈ F kB forms B(∗k/j). Then the game
continues from the position (w− 1, A(F k/j), B(∗k/j)).

• ∀≥k-move: Spoiler chooses j ∈ [m], k ∈ N and a k-
choice function F k on B. For every k-choice function
Gk on A, Spoiler selects G from Gk. The union of the
A(G/j) over Ak ∈ F kA forms A(∗k/j). Then the game
continues from the position (w− 1, A(∗k/j), B(F k/j)).

(Atomic) The game ends in a position (w,A,B) if either
there is an atomic formula ϕ such that (A,B) |= ϕ, in which
case Spoiler wins, or if w = 1, in which case Duplicator wins
if there is no such ϕ.

z
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y zx

y

Fig. 2. The ∃≥k-move in the CS game. On the left the k-Change operation:
k different elements are chosen by Spoiler. On the right the two steps of
the k-Multiplication. The first step is to form all k-choice functions (each
symbolized by a box). In the second step Spoiler picks one interpretation in
each box to compose the new family.

C. An illustration of the CS game

Example IV.3. Consider two structures A and B of 3 and 4
elements respectively, onto which we define the unary relations
blue and red, as illustrated in Fig. 3.
The sentence ∃≥2x (blue(x)∧ red(x)) distinguishes A and B
and is of size w = 3. It is easy to check by enumerating a
finite number of formulae that no formula of size w = 2 in
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Fig. 3. Structures A and B with relations red and blue, and a possible ∃≥2x
move.

counting logic with counting rank 2 is able to distinguish A
from B.
Consider the starting position CS1,23 (A0, B0). In the following
description we omit w for simplicity. Assume again that
Spoiler plays ∃≥2x and picks {1, 2} in the left, corresponding
to two copies of A, with α(x) = 1 and α(x) = 2. The 2-choice
functions on B are {1, 2}, {1, 3}, {2, 3}.
Spoiler now has several options to select a choice function:
{{1, 1, 3}} = {1, 3} (as on the Figure), {1, 2}, {2, 3} or
{1, 2, 3}. In all these cases, neither red nor blue distinguishes
the two families. So the game has to go on for Spoiler to
be able to win. In fact, it is not too complicated to check
that Spoiler does not win from the position CS1,2

2 (A0, B0).
Continuing from ({1, 2}, {1, 3}) as in the Figure, Spoiler can
play the ∧ move to get to one of the two positions:

• {1, 2} on A and {1} on B, which wins by playing red.
• {1, 2} on A and {3} on B, which wins by playing blue.

So, the ”∃≥2x(red(x) ∧ blue(x))” sequence of moves is
winning for Spoiler and the corresponding formula separates
A from B.

V. GAME CHARACTERIZATION THEOREM

In this section, we state the game characterization theorem
and formulate some corollaries. The proof of the characteri-
zation theorem is given in Appendix A.

A. Game characterization and corollaries

Theorem V.1 (Characterization Theorem). Let A,B be fam-
ilies and w be a positive integer. Then the following are
equivalent:

1) Spoiler has a winning strategy in the game CSmw (A,B).
2) There is a Cm formula ϕ of size |ϕ| ≤ w such that

(A,B) |= ϕ.

A corollary for structures is as follows:

Corollary V.2. Let (A and B) be structures and let w be a
positive integer. Then the following conditions are equivalent:

1) Spoiler has a winning strategy in the game
CSmw (A0, B0).

2) There is a Cm-sentence ϕ of size |ϕ| ≤ w such that
(A,B) |= ϕ.

Corollary V.3. Let (A and B) be structures and let w be a
positive integer. Then the following conditions are equivalent:

1) Spoiler has a winning strategy in the game
CSmw (A0, B0).

2) There is a Cm-sentence ϕ of size |ϕ| ≤ w such that
(A,B) |= ϕ.

We now describe the variation of the game for bounded
counting rank.

Definition V.4 (CS game for Ctm-formula size). The
CSm,tw (A,B) game is the version of the CSmw (A,B) game
where k ≤ t for the ∃≥k and ∀≥k moves.

Corollary V.5. Suppose A and B be families and let w be a
positive integer. Then the following are equivalent:

1) Spoiler has a winning strategy in the game
CSm,tw (A,B).

2) There is a Ctm-formula ϕ of size |ϕ| ≤ w such that
(A,B) |= ϕ.

The proof is similar to the CS game characterisation of Cm
formula size presented in Section A, but with the aforemen-
tioned parameter k bounded, and is omitted.

We also derive a variation of the game for graded modal
logic, where the modal binary relation is denoted by E.

Definition V.6 (CS game for graded modal logic formula size).
The E-CS 2

w(A,B) game is the two variables version of the
CS 2

w(A,B) game where additionally for the ∃≥k and ∀≥k
moves: Spoiler chooses i ∈ [m] that has already been chosen
(i.e a variable xj with an assignment), and the spaces of the
k-choice functions are limited to {e ∈ A|E(α(xi), e)} and
{e ∈ B|E(β(xi), e)}.

Following the equivalence between the expressivity of
GNNS and the graded modal logic established in [2], we obtain
the following corollary linking the distinguishing power of
GNNS and EF games:

Corollary V.7. Suppose A and B be families and let w be a
positive integer. Then the following are equivalent:

1) Spoiler has a winning strategy in the game E-
CS 2

w(A,B).
2) There is a GNN that expresses an FO formula of size w

that is capable of distinguishing A from B.

VI. LINEAR ORDERS DISTINGUINSHABILITY THROUGH
COUNTING LOGICS

In this section, we present the new results derived from the
complexity games for distinguishability and indistinguishabil-
ity of finite linear orders.

A linear order is defined over the signature {min,max,<
, succ}, where < is a linear ordering and succ is the successor



relation. An denotes the structure ({0, . . . , n} , <), where <
is the standard linear order of {0, . . . , n}. In the rest of the
paper, without loss of generality we will take linear orders on
the integers, and we will denote by d(b, a) the quantity |b−a|
for a, b integers.

A. Lower bound for the quantifier rank necessary to distin-
guish linear orders

Theorem VI.1. Let t, k > 0, and let L1, L2 be linear orders
of length at least (t+ 1)k.
Then L1 ≡Ct[k] L2;
where Ct[k] denotes the fragment of the counting logic with
counting rank at most t and quantifier rank at most k.

This result extends the theorem from [26] stating that two
linear orders of size at least 2k cannot be distinguished by a
FO[k] formula.

The proof of this result is relatively short, and provides
a good intuition about the framework developed for the more
complex Theorem VI.3. The proof follows the pebble EF game
of Definition III.1, with bounded counting rank [22] and is
presented in Appendix B.

B. Upper bound for the minimal size necessary to distinguish
linear orders

The following proposition gives an upper bound on the size
of Ct2- formulas distinguishing linear orders of different sizes.

Proposition VI.2. There is a Ct2-formula ϕ of size O(n/t)
such that for n < m it holds that (An,Am) |= ϕ.

Proof. Consider the formulae:
1) ϕ0(x) = (x = x).
2) ϕt(l+1)(x) = ∃≥ty((y < x) ∧ ϕtl(y)).
3) For n = tl + p with p < t: ϕtl+p(x) = ∃≥py((y <

x) ∧ ϕtl(y))
Let ϕ = ¬∃x ϕn+1(x) Then a linear order satisfies ϕ iff it has
size at most n. The size of ϕ is O(n/t).

C. Lower bound for the size necessary of a Ct3 formula to
distinguish linear orders

Using the CS3,t game introduced in Section V, we derive
the following lower bound for the size of a Ct3 formula
distinguishing linear orders:

Theorem VI.3. If ϕ is a Ct3-formula distinguishing An and
Am, where n < m, then |ϕ| ≥

√
n
t .

For t = 1, i.e. for FO3, this theorem improves on the best
known lower bound of [14] from

√
n/2 to

√
n.

The rest of the paper is dedicated to proving this result.

VII. PROOF OF THEOREM VI.3

A. Description of the framework

We extend the framework for FO of [14] to counting
logic. We start by describing the main concepts: the counting
game derived extended syntax trees, the separators, and the
weighting scheme.

1) Extended Syntax Tree: Given two families A,B, the
extended syntax tree represents a winning strategy for Spoiler
in the CS3,t game on (A,B). It assigns to each tree node
v a pair of families il(v) (“interpretation label”), along with
Spoiler’s move sl(v) (“syntax label”) in this position such that:

1) A node v1 is a child of node v if position il(v1) can be
obtained in one move from il(v),

2) A node v is a leaf if il(v) satisfies the atomic win
condition.

The root is associated to the starting position of the game
CS3,t, and we consider the nodes associated to positions
reached through a winning strategy.

Definition VII.1. Let ψ be an Ct3-formula, let A and B be
families of interpretations such that (A,B) |= ψ. By induction
on the construction of ψ, we define an extended syntax tree
T

⟨A,B⟩
ψ as follows:

• If ψ is an atomic formula, then T
⟨A,B⟩
ψ consists of a

single node v that has a syntax label sl(v) := ψ and
an interpretation label il(v) := ⟨A,B⟩.

• If ψ is of the form ¬ψ1, then T ⟨A,B⟩
ψ has a root node v

with sl(v) := ¬ and il(v) := ⟨A,B⟩. The unique child
of v is the root of T ⟨B,A⟩

ψ1
. Note that (B,A) |= ψ1.

• If ψ is of the form ψ1∨ψ2, then T ⟨A,B⟩
ψ has a root node v

with sl(v) := ∨ and il(v) := ⟨A,B⟩. The first child of v
is the root of T ⟨A1,B⟩

ψ1
and the second child of v is the root

of T ⟨A2,B⟩
ψ2

, where Ai = {(A, α) ∈ A : (A, α) |= ψi} for
i ∈ {1, 2}. Note that A = A1 ∪A2 and (Ai, B) |= ψi.

• If ψ is of the form ψ1∧ψ2, then T ⟨A,B⟩
ψ has a root node v

with sl(v) := ∧ and il(v) := ⟨A,B⟩. The first child of v
is the root of T ⟨A,B1⟩

ψ1
and the second child of v is the root

of T ⟨A,B2⟩
ψ2

, where Bi = {(B, β) ∈ B : (B, β) |= ¬ψi}
for i ∈ {1, 2}. Note that B = B1 ∪B2, (A,Bi) |= ψi.

• If ψ is of the form ∃≥kuψ1, for a variable u ∈ {x, y, z}
and k ≤ t, then T

⟨A,B⟩
ψ has a root node v with

sl(v) := ∃≥ku and il(v) := ⟨A,B⟩. The unique child
of v is the root of T ⟨A(Fk/u),B(∗k/u)⟩

ψ1
, where F k ∈ F kA is

chosen so that A(F k/u) |= ψ1, and for every Gk ∈ F kB ,
G is selected from Gk so that B(G/u) |= ¬ψ1. Since
B(∗k/u) =

⋃
Gk∈Fk

B
B(G/u), note that

(A(F k/u), B(∗k/u)) |= ψ1.
• If ψ is of the form ∀≥kuψ1, for a variable u ∈ {x, y, z}

and k ≤ t, then T ⟨A,B⟩
ψ has a root node v with sl(v) :=

∀≥ku and il(v) := ⟨A,B⟩. The unique child of v is the
root of T ⟨A(∗k/u),B(Fk/j)⟩

ψ1
, where F k ∈ F kB is chosen so

that B(F k/u) |= ¬ψ1, and for every Gk ∈ F kA, G is se-
lected from Gk so that A(G/u) |= ψ1. Since A(∗k/u) =⋃
Gk∈Fk

A
A(G/u), note that (A(∗k/u), B(F k/u)) |= ψ1.

We define |T ⟨A,B⟩
ψ | to be the number of nodes in the tree

T
⟨A,B⟩
ψ . It is trivial to check by induction that |T ⟨A,B⟩

ψ | = |ψ|.

Next we specify separators, the key concept to study suc-
cinctness on linear orders. Separators express the distance



from which, at a given position in the game (i.e. at a certain
size in the formula), we are able to distinguish two elements
of linear orders. This distance differs for each element of
P2({min,max, x, y, z}), where the P2 operator describes the
subsets of size two.

2) Separators and Weighting Scheme:

Definition VII.2 (separator). Let A and B be
sets of interpretations. A separator is a mapping
δ : P2({min,max, x, y, z}) → N. δ is called separator
for ⟨A,B⟩, if the following is satisfied:

For every I := (A, α) ∈ A and J := (B, β) ∈ B, there are
u, u′ ∈ {min,max, x, y, z} with u ̸= u′, such that :

1) <-type(α(u), α(u′)) ̸=<-type(β(u), β(u′)) or
2) both:

• MIN[d(α(u), α(u′)), d(β(u), β(u′))] ≤ δ({u, u′})
and,

• d(α(u), α(u′)) ̸= d(β(u), β(u′)).
where, for a, b ∈ N, d(a, b) := |a − b| and <-type(a, b) is
” = ”, ” < ” or ” > ” reflecting the order between a and b.

Definition VII.3 (weight of a separator and minimal separa-
tor). Let δ be a separator, we define its:

1) border-distance b(δ) := MAX {δ({min,max}),
δ({min, u}) + δ({u′,max}) : u, u′ ∈ {x, y, z}}

2) centre-distance c(δ) := MAX {δ(p) + δ(q) : p, q ∈
P2({x, y, z}), p ̸= q}

3) weight w(δ) :=
√
c(δ)2 + b(δ).

The weight is a measure of the distinguishing power of
separators. We call minimal separator of a pair of structures
a separator of minimal weight.

B. Proof of Theorem VI.3

We introduce the main technical lemma of the proof, which
links separators weights to the structure of the tree.

Lemma VII.4. Suppose (A,B) |= ψ and let T be the extended
syntax tree T ⟨A,B⟩

ψ . For every node v of T the following is true:
1) If v is a leaf, then w(δ) ≤ 1.
2) If v has 2 children v1 and v2, and δi is a minimal separa-

tor for il(vi), for i ∈ {1, 2}, then w(δ) ≤ w(δ1)+w(δ2).
3) If v has exactly one child v1, and δ1 is a minimal

separator for il(v1), then w(δ) ≤ w(δ1) + t.
where δ is a minimal separator for il(v).

The proofs of parts 1. and 2., related only to the syntax
of first-order logic, are almost the same in our counting logic
extended syntax tree framework as in [14], and are given in
Appendix C. However, the proof of Lemma VII.4 part 3.,
which accounts for the counting quantifiers, requires different
arguments, to take into account the “multiple choices” needed
in counting logic, and is given in Section VII-C.
The bound of part 3. extends the corresponding bound of [14]
to counting logic. In fact, for counting rank 1, i.e., for first-
order logic without counting, it improves the bound from

w(δ) ≤ w(δ1) + 2 to w(δ) ≤ w(δ1) + 1. This leads to the
slight improvement of the lower bound of [14] mentioned after
Theorem VI.3.

From Lemma VII.4’s inductive relation on the minimal
weight of extended syntax tree nodes, we derive a lower bound
on the size of the tree in terms of the minimal weight of the
root.

Lemma VII.5. Let T be a finite binary tree where each node
v is equipped with a weight w(v) > 0 such that the following
is true:

• If v is a leaf, then w(v) ≤ 1.
• If v has 2 children v1 and v2, then w(v) ≤ w(v1)+w(v2).
• If v has exactly one child v1, then w(v) ≤ w(v1) + t.

Then, |T | ≥ w(r)
t , where r is the root of T and |T | is the

number of nodes of T .

Proof. The proof is by induction:

• If T is a leaf, |T | = 1 ≥ w(r)
t .

• If T ’s root starts with two children v1, v2 associated to
the trees T1, T2. By inductive hypothesis |Ti| ≥ w(vi)

t , so
|T | = |T1|+ |T2|+ 1 ≥ w(v1)

t + w(v2)
t + 1 ≥ w(r)

t .
• Finally if T ’s root starts with one child v1 associated to

the tree T1. By inductive hypothesis |T1| ≥ w(v1)
t , so

|T | = |T1|+ 1 ≥ w(v1)
t + t

t ≥
w(r)
t .

Finally we can derive a lower bound for the size of the
extended syntax trees on the counting logic with the main
result:

Theorem VII.6. Suppose (A,B) |= ψ and δ is a minimal
separator for ⟨A,B⟩, then |ψ| ≥ w(δ)

t .

Proof. Consider T ⟨A,B⟩
ψ the syntax tree for the pair ⟨A,B⟩,

ψ.
We associate to each node v of T ⟨A,B⟩

ψ a weight w(v) :=
w(δv), where δv is a minimal separator for il(v). From
Lemmas VII.4 and VII.5, we get that |ψ| = |T ⟨A,B⟩

ψ | ≥ w(δ)
t ,

where δ is a minimal separator of il(r) =< A,B >.

Finally, as a consequence, we get Theorem VI.3.

Proof. Suppose ψ is an Ct3-sentence such that An |= ψ and
Am |= ¬ψ. Let α be the assignment that assigns x, y and z
to 0. Consider the separator δ : P2({min,max, x, y, z}) → N
defined as:

• δ({min,max}) = n,
• δ({u, u′}) = 0 for (u, u′) ∈ P2({min,max, x, y, z}) \

{(min,max)}.

It is easy to see that w(δ) =
√
n and that δ is a minimal

separator for ⟨(An, α), (Am, α)⟩. Then Theorem VI.3 follows
from Theorem VII.6 and this observation.



For every on , is a separator for .

Case 1: There is for which one of the is separated

from by for .

Case 2: There is an and such that

and there is no that satisfies

and .

Case 3: There is an such that and there is no

verifying for every .

Case 4: There is an and there are such that and

and there is no that satisfies ,

and .

Case 5: There is such that there are choices of

in and .

Case 6: Remaining cases.

Fig. 4. The structure of the proof.

C. Proof of Lemma VII.4

The proof of Lemma VII.4 part 3. relies on the following
key lemma:

Lemma VII.7. Let v be a node of T that has syntax-label
sl(v) = Q≥ku for Q ∈ {∃,∀}, k ≤ t and u ∈ {x, y, z}. Let
δ1 be a separator for il(v1), where v1 is the unique child of
v in T . Let δ be the separator defined via:

• δ({u, u′}) := 0 , for all u′ ∈ {min,max, x, y, z} \ {u},
• δ({min,max}) :=MAX{δ1({min,max}), δ1({min, u})

+ δ1({u,max}) + k − 1}.
And for all u′, u′′ such that {x, y, z} = {u, u′, u′′} and
all m ∈ {min,max}:

• δ({u′, u′′}) :=MAX{δ1({u′, u′′}), δ1({u′, u})
+δ1({u, u′′}) + k − 1},

• δ({m,u′}) :=MAX{δ1({m,u′}), δ1({m,u})
+δ1({u, u′}) + k − 1} .

Then, δ is a separator for il(v).

Lemma VII.7 precisely captures how counting quantifiers

increase the distinguishing power of separators. From Lemma
VII.7, we obtain Lemma V II.4 part 3. by building inequalities
on the weight, which is done in Appendix D.

1) Overview of the proof of Lemma VII.7:

Proof. Due to symmetry, we only consider the case ∃≥kz. It
has to be shown that δ is a separator for ⟨A,B⟩ = il(v).
By definition, il(v1) = ⟨A(F k/z), B(∗k/z)⟩. Consider I =
(A, α) ∈ A and J = (B, β) ∈ B. Let:

• IFk := {(A, α(F ki (A, α)/z)} be the set of interpretations
generated from I in v1, and let ai = F ki (A, α) and IiFk =
(A, α(ai/z)), 1 ≤ i ≤ k.

• For any k-choice function Gk on B, let G be the choice
function selected from Gk, and let JG be the interpre-
tation selected from JGk = {(B, β(Gki (B, β)/z))}. We
define bi := Gki (B, β); note that JG corresponds to some
bj , 1 ≤ j ≤ k.

For every Gk on B, δ1 is a separator for ⟨IFk , JG⟩. Thus
for every ai there is a pair uiG, v

i
G in {min,max, x, y, z} such

that ⟨IiFk , JG⟩ is separated by δ1({uiG, viG}). The proof of the



Lemma follows by considering several cases, as illustrated in
Fig. 4. In each case, it is shown that δ separates ⟨I, J⟩. Cases
1-5 are overlapping, and after considering these cases we show
that they cover all the possibilities, i.e. Case 6 leads to a
contradiction.
The first case, when z is not needed in δ1, is the same as
the first case in [14]. Cases 2-4 show that if there is an ai
in some nearness relationship with the interpretation (A, α)
according to δ1, then δ is a separator. In Case 5, we introduce
the concept of gap, which is the set of elements not covered by
the nearness conditions imposed by δ1. The condition of Case
5 depends on the number of elements ai in the gaps. This is
the point where the additive term k enters the bound. Finally,
in Case 6 is shown that these cases cover all possibilities, as
otherwise there is a set {b1, . . . , bk} duplicating {a1, . . . , ak}
in the sense that no bj allows δ1 to separate. Case 6 in
particular explains the improvement of our proof over the
result of [14] for FO, as a “+1” is introduced in [14] to deal
with what would encompass that case.

2) Rest of the proof: Note that for all u ∈ {min,max,
x, y}, and for all i ∈ [k], α(F ki (A, α)/z)(u) = α(u). So we
will omit subscripts and just write α(x) for the assignment of x
and minA for the minimum in the k copies of (A, α) (and sim-
ilarly with y,max). Similarly, for all u ∈ {min,max, x, y},
for all i ∈ [k], and for all Gk ∈ F kB ,
β(Gki (B, β)/z)(u) = β(u), so we will also write β(x) for
the assignment of x and minB for the minimum in the k
copies of (B, β) (and similarly with y,max). We will say that
δ({u, u′}) separates ⟨I, J⟩ to signify that the pair of variable
{u, u′} witnesses the separation property of δ on ⟨I, J⟩.

Case 1: There is Gk for which one of the IiFk is separated
from JG by δ1({u, u′}) for {u, u′} ∈ {min, x, y,max}.

If there exists {u, u′} ∈ {min, x, y,max} such that
δ1({u, u′}) separates ⟨IFk , JG⟩ then by definition δ({u, u′})
separates ⟨I, J⟩.

Assumption 1 In the rest of the proof we will suppose
that none of the IiFk is separated from JG by δ1({u, u′}) for
{u, u′} ∈ {min, x, y,max}.
Without loss of generality, we may assume that α(x) ≤ α(y).
If β(x) > β(y), δ1({x, y}) separates ⟨IFk , JG⟩ for every Gk,
which is a contradiction, so β(x) ≤ β(y).

To be able to consider the k choices simultaneously, we
are looking to find for each choice ai, a bi ∈ UB that δ1
will not be able to distinguish, in an adversary mindset. An
element ai has a particular location in (A, α) with regards
to δ1({z, u}) for u ∈ {x, y,min,max}, namely that either
d(ai, α(u)) ≤ δ1({z, u}) or d(ai, α(u)) > δ1({z, u}). An
ai location is also based on its type (” = ”, ” < ”, ” > ”)
relative to minA, α(x), α(y),maxA, which we will refer
to as <-type(ai) (<-type(ai) can be seen as the 4-tuple
(<-type(ai,minA), <-type(ai, α(x)), <-type(ai, α(y)), <-
type(ai,maxA))).

Case 2: There is an ai and a u ∈ {x, y,min,max} such that
d(ai, α(u)) ≤ δ1({z, u}) and there is no b ∈ UB that satisfies
d(ai, α(u)) = d(b, β(u)) and <-type(ai) = <-type(b).

We consider two sub-cases to better handle several variables
at the same time. Case 2.2 is represented in Fig. 5.

Case 2.1: There is an ai and a u ∈ {x, y,min,max}
such that d(ai, α(u)) ≤ δ1({z, u}) and there is no b ∈ UB

such that d(ai, α(u)) = d(b, β(u)) and <-type(ai, α(u)) =
<-type(b, β(u)).

We have four cases:
- u is min: then then δ({min,max}) ≥ δ1({min, z}) ≥

d(ai,minA) > d(maxB ,minB). Therefore:
• d(maxB ,minB) ̸= d(maxA,minA);
• d(maxB ,minB) ≤ δ({min,max}).

So δ({min,max}) separates ⟨I, J⟩.
- u is max: the above reasoning applies by symmetry.
- u is x: If α(x) < ai, δ({x,max}) ≥ δ1({x, z}) ≥

d(ai, α(x)) > d(maxB , β(x)). Then:
• d(maxA, α(x)) ̸= d(maxB , β(x));
• d(maxB , β(x)) ≤ δ({x,max}).

So δ({x,max}) separates ⟨I, J⟩. If α(x) > ai, we reach
a similar conclusion. Note that α(x) = ai contradicts the
assumption.

- u is y: the above reasoning applies by symmetry.

Case 2.2: There is an ai and a u ∈ {x, y,min,max} such
that d(ai, α(u)) ≤ δ1({z, u}) and there is no b ∈ UB such
that d(ai, α(u)) = d(b, β(u)) and <-type(ai) = <-type(b).

We assume we are not in Case 2.1, so there exists a b ∈ UB

verifying d(ai, α(u)) = d(b, β(u)) and <-type(ai, α(u)) =
<-type(b, β(u)), note that such a b is unique, as we are
working on linear orders. We fix b and call u′ the vari-
able in {x, y,min,max} such that <-type(ai, α(u′)) ̸= <-
type(b, β(u′)) by hypothesis of Case 2.2. The type is different,
so it must be that both:

• d(α(u′), α(u)) ̸= d(β(u′), β(u));
• MIN[d(α(u′), α(u)), d(β(u′), β(u))] ≤ d(ai, α(u)).

Since d(ai, α(u)) ≤ δ1({z, u}) ≤ δ({u′, u}) we get:
• d(α(u′), α(u)) ̸= d(β(u′), β(u));
• MIN[d(α(u′), α(u)), d(β(u′), β(u))] ≤ δ({u′, u}).

So δ({u′, u}) separates⟨I, J⟩.
Assumption 2 In the rest of the proof, we will suppose

that if there is an ai and a u ∈ {x, y,min,max} such that
d(ai, α(u)) ≤ δ1({z, u}), then there is a b ∈ UB such that
d(ai, α(u)) = d(b, β(u)) and <-type(ai) = <-type(b).

We define Si := {u ∈ {x, y,min,max} : d(ai, α(u)) ≤
δ1({z, u})}, the set of variables to which ai is “near”.

Case 3: There is an ai such that |Si| ≥ 2 and there is no
b ∈ UB verifying d(ai, α(u)) = d(b, β(u)) for every u ∈ Si.

We give a visual representation of this case in Fig. 7 in
Appendix E.

Suppose there is no such b, we call u, u′ two elements
of Si. Then Assumption 2 implies that d(α(u), α(u′)) ̸=
d(β(u), β(u′)). Notice that d(α(u), α(u′)) ≤ d(ai, α(u))+
d(ai, α(u′)) ≤ δ1({z, u}) + δ1({z, u′}) ≤ δ({u, u′}). So:

• d(α(u), α(u′)) ̸= d(β(u), β(u′));



B

A

Fig. 5. Case 2 of the proof of Lemma VII.7.
We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable u accounts
for the ability of the pair {u, z} to separate. The crossed dot on A represents a choice on the linear order from Fk , the crossed dot on B represents “a best
attempt” at a response for indistinguishability. In Case 2, the choice on A is in a nearness relationship (for δ1({x, z}) on the figure), and there is no element
of B that matches the separating conditions for indistinguishability (in the figure, d(a1, α(x)) = d(b1, β(x)) but <-type(a1) ̸= <-type(b1)).

• d(α(u), α(u′)) ≤ δ({u, u′}).
Therefore δ({u, u′}) separates ⟨I, J⟩.

Assumption 3 In the rest of the proof, we will suppose that
if there is an ai such that |Si| ≥ 2, then there is b ∈ UB such
that d(ai, α(u)) = d(b, β(u)) for all u ∈ Si.

Case 4: There is an ai and there are u, u′ ∈
{x, y,min,max} such that d(ai, α(u)) > δ1({z, u}) and
d(ai, α(u′)) ≤ δ1({z, u′}) and there is no b ∈ UB that
satisfies d(ai, α(u′)) = d(b, β(u′)), <-type(ai) = <-type(b)
and d(b, β(u)) > δ1({z, u}).

We give a visual representation of this case in Fig. 8 in
Appendix E.

Assume such an ai exists, we set u, u′ ∈ {x, y,min,max}
and b ∈ UB such that d(ai, α(u′)) = d(b, β(u′)), <-
type(ai) = <-type(b), note that such a b exists by Assumption
2.
By hypothesis d(b, β(u)) < d(ai, α(u)), so we must
have that d(β(u′), β(u)) ̸= d(α(u′), α(u)). Notice that
d(β(u′), β(u)) ≤ d(b, β(u))+d(b, β(u′)) ≤ δ1({z, u}) +
δ1({z, u′}) ≤ δ({u, u′}). So:

• d(α(u′), α(u)) ̸= d(β(u′), β(u));

• d(β(u′), β(u)) ≤ δ({u, u′}).
So δ({u, u′}) separates ⟨I, J⟩.
Assumption 4 In the rest of the proof, we will suppose

that if there is an ai and u, u′ ∈ {x, y,min,max} such that
d(ai, α(u)) > δ1({z, u}) and d(ai, α(u′)) ≤ δ1({z, u′}) then
there is b ∈ UB such that d(ai, α(u′)) = d(b, β(u′)) and
d(b, β(u)) > δ1({z, u}).

Before proceeding to the next case, we define quantities,
called gaps, to characterize the elements of a linear order not
in any nearness relationship to any of the assignments.

Definition VII.8 (Gap). For (U , γ) ∈ {(A, α), (B, β)}, we
derive three 1 particular quantities called gaps:

Gap(U,γ)({min, x}) = {a ∈ [minU , γ(x)]|
∀u ∈ {x, y,min,max}, d(a, γ(u)) > δ1({u, z})}

Gap(U,γ)({y,max}) = {a ∈ [γ(y),maxU ]|
∀u ∈ {x, y,min,max}, d(a, γ(u)) > δ1({u, z})}

1The three cases are analogous, but a unified formal definition appears to
be less readable.



Gap(U,γ)({x, y}) = {a ∈ [γ(x), γ(y)]|
∀u ∈ {x, y,min,max}, d(a, γ(u)) > δ1({u, z})}

The motivation for gaps is that a separator cannot distin-
guish between two elements located within the same gap.
We will refer to as “gap variables” any two variables among
{x, y,min,max} that bound a given gap 2. More formally:

Definition VII.9 (Gap variables). For an interpretation (U , γ)
and a pair of variables (u, u′) ∈ {(min, x), (x, y), (y,max)},
the gap variables (v, v′) of Gap(U,γ)({u, u′}) are defined as:

• (u, u′) = (min, x): (v, v′) is a pair of variables in
{(min, x), (min, y), (min,max)} such that

|Gap(U,γ)({min, x})|+ δ1({z, v}) + δ1({z, x}) ≥
d(γ(v′), γ(v))

• (u, u′) = (y,max): (v, v′) is a pair of variables in
{(y,max), (x,max), (min,max)} such that

|Gap(U,γ)({y,max})|+ δ1({z, v}) + δ1({z, x}) ≥
d(γ(v′), γ(v))

• (u, u′) = (x, y): (v, v′) is a pair of variables in
{(x, y), (min, y), (x,max), (min,max)} such that

|Gap(U,γ)({x, y})|+ δ1({z, v}) + δ1({z, x}) ≥
d(γ(v′), γ(v))

In the definition, the (v, v′) are “bounding” the gap (u, u′)
on U . It is clear that such pairs (v, v′) exist by the definition
of gaps, and if multiple pairs verify one of the inequalities,
we pick the smallest pair in lexicographic order to be the gap
variables. We give a visual representation of the definitions in
Fig. 10 in Appendix F.

A gap {u, u′} needs not have gap variables {u, u′}. For
example, the gap {min, x} might have gap variables {min, y}
when the δ1(y, v) radius circle contains the δ1(x, v) radius
circle, hence covering a bigger chunk of the {min, x} interval.
If the gap is nonempty, the inequalities in Definition VII.9
become equalities, as the two circles corresponding to the gap
variables are non-overlapping, and so the two radii added to
the length of the gap add up to the length of the interval.

We derive a couple results for gap variables before proceed-
ing to the next case:

Proposition VII.10. If there are u, u′ ∈ {x, y,min,max}
such that MIN [ d(α(u), α(u′)),d(β(u), β(u′))] ≤ δ1({z, u})
then d(α(u), α(u′)) =d(β(u), β(u′)).

Proof. Suppose not, since δ1({z, u}) ≤ δ({u, u′}) we have:
• d(α(u), α(u′)) ̸=d(β(u), β(u′)),
• MIN [ d(α(u), α(u′)),d(β(u), β(u′))] ≤ δ({u, u′}).

So δ({u, u′}) separates ⟨I, J⟩.

2A note on terminology: here min and max are seen as arguments of a
separator function.

Proposition VII.11. Let v, v′ are the gap variables associ-
ated with Gap(A,α)({u, u′}) if and only if v, v′ are the gap
variables associated with Gap(B,β)({u, u′}).

Proof. Let v, v′ be the gap variables associated with
Gap(A,α)({u, u′}), and suppose w,w′ are the gap variables
associated with Gap(B,β)({u, u′}).
We will first reason from (A, α) to (B, β), and suppose that
α(v) < α(w) ≤ α(u). By the definition of the gap on (A, α),
it must be that δ1({z, v}) ≥ d(α(w), α(v)) + δ1({z, w}).
Then proposition VII.10 implies that d(α(w), α(u)) =
d(β(w), β(u)). So δ1({z, v}) ≥ d(β(w), β(v)) + δ1({z, w}),
therefore w cannot be a gap variable for Gap(B,β)({u, u′}).
The same reasoning applies from the gap on (B, β) to the gap
on (A, α), yielding the result.

Case 5: There is (u, u′) ∈ {(min, x), (x, y), (y,max)}
such that there are p choices of F k in Gap(A,α) and
|Gap(B,β)({u, u′})| < p.

We give a visual representation of this case in Fig. 9 in
Appendix E.

By proposition VII.10, there is a unique pair v, v′ of gap
variables for both Gap(A,α)({u, u′}) and Gap(B,β)({u, u′}).
On one hand by the gap variables definition on (B, β),
we have d(β(v′), β(v)) ≤ δ1({z, v}) + δ1({z, v′}) +
|Gap(B,β)({u, u′})| ≤ δ1({z, v}) + δ1({z, v′}) + (k − 1) ≤
δ({v, v′}).
On the other hand by the gap variables definition on
(A, α), d(α(v′), α(v)) = δ1({z, v}) + δ1({z, v′}) +
|Gap(A,α)({u, u′})| > d(β(v′), β(v)). Finally δ({v, v′}) sep-
arates ⟨I, J⟩.

Assumption 5 In the rest of the proof, we assume that if
there are p choices of F k in Gap(A,α)({u, u′}) for (u, u′) ∈
{(min, x), (x, y), (y,max)} then |Gap(B,β)({u, u′})| ≥ p.

Case 6: Remaining cases. Note that Si = ∅ if and only if
ai is in a gap. Recall the assumptions so far in the proof:

• From Assumption 1: for every Gk, ⟨IFk , JG⟩ can only
be distinguished by δ1(z, u) for u ∈ {x, y,min,max};

• From Assumptions 2 to 4: for every ai such that Si ̸= ∅,
we have that there exists a unique bi ∈ UB such that
<-type(ai) = <-type(bi), d(bi, β(u)) = d(ai, α(u)) for
all u ∈ Si and d(bi, β(u)) > δ1({z, u}) for all u ∈
{x, y,min,max} \ Si.

• From Assumption 5: for every ai in Gap(A,α)({u, u′})
for (u, u′) ∈ {(min, x), (x, y), (y,max)}, there exists a
distinct bi ∈ Gap(B,β)({u, u′}).

Consider the choice function Gk consisting of the k bi’s
matching the k ai’s as described above. Suppose index j
from the choice function Gk is selected to create JG. Then by
construction δ1({z, u}) does not distinguish ⟨IFk

j
, JG⟩ for any

u ∈ {x, y,min,max}, which contradicts Assumption 1. The
situation is represented in Fig. 6. In conclusion, the δ defined
separates ⟨I, J⟩.



B

A

Fig. 6. < IFk , JG > cannot be separated by δ1 in Case 6 of the proof of Lemma VII.7.
We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable u accounts
for the ability of the pair {u, z} to separate. The regions of the linear orders that are not covered by any of the balls are the gaps, in purple on the Figure
(in the example, the {min, x} gap is empty. The crossed dots on A represents the choices on the linear order from Fk , the crossed dots on B represent the
best attempts at a response for indistinguishability. In Case 6, every choice on A can be matched by a different δ1-indistinguishable element of B.

VIII. CONCLUSION AND PERSPECTIVES

In this paper an EF game is formulated for formula size for
counting logic. It is used to prove a

√
n/t lower bound for

the size of 3-variable counting logic formulae with counting
rank t, distinguishing a linear order of size n from a larger
one. The lower bound extends a Ω(

√
n) lower bound of [14].

The proof is based on the approach of [14], with a different
argument for the central case of handling counting quantifiers.
Closing the gap between the lower bound and the upper bound
of size O(n/t) is an open problem. This is open even in the
FO case where, as far as we know, no improvement is known
of the linear upper bound.

The lower bound has some implications for comparing
formula sizes of various fragments of counting logic. Com-
paring the succinctness of various knowledge representation
formalisms is studied in detail in knowledge compilation [5],
Boolean complexity theory [23] and other areas, but, as noted
in [14], perhaps less so for predicate logic. Bounds comparing
m-variable counting logic formula sizes for m = 2, 3, 4 will
be included in the final version of this paper. Separating the
expressivity of the 2- and 3-variable fragments is an open
problem, and it seems to be open for the FO case as well.

We conclude with a brief description of the connection
between GNN and counting logic formula size, which is one
of the motivations of this work and the subject of ongoing
work. A GNN works on a graph with feature vectors assigned
to the nodes. In each round these are updated by applying a
combination function to the previous vector and an aggregate
of the feature vectors of the neighbors [17]. A logical classifier
computes a unary query on graphs (e.g., assigning to every
graph the set of red vertices with all blue neighbors). Barceló
et al. [2] showed that an FO logical classifier is computable by
a GNN iff it is definable in 2-variable guarded counting logic.
See also [12], [13], also noting that this is a “uniform” model.
Every such formula has a GNN simulation with complexity
(number of features and rounds) depending on the complexity
of the formula.

In ongoing work with coauthors we study GNN learning a
query corresponding to a formula. One question we consider
is: to what extent can the model learned on one class of
graphs be transferred to some other class of graphs? How does
performance depend on the formula and the graph classes?
The answer seems to be related to the connection between
counting logic and the Weisfeiler-Leman algorithm mentioned



in the introduction, and formula complexity may play a role
here. Another related question, recently considered in [30], is
whether the underlying formula be extracted from a learned
GNN using explainability techniques?
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[30] PLUSKA, A., WELKE, P., GÄRTNER, T., AND MALHOTRA, S. Logical
distillation of graph neural networks. In Proceedings of the 21st
International Conference on Principles of Knowledge Representation
and Reasoning, KR 2024 (2024).

[31] SCARSELLI, F., GORI, M., TSOI, A. C., HAGENBUCHNER, M., AND
MONFARDINI, G. The graph neural network model. IEEE Trans. Neural
Networks 20, 1 (2009), 61–80.

[32] VINALL-SMEETH, H. From quantifier depth to quantifier number:
Separating structures with k variables, 2024.

[33] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How powerful are
graph neural networks? In 7th International Conference on Learning
Representations, ICLR 2019 (2019).



APPENDIX A
PROOF OF THE COUNTING GAME FOR SIZE

CHARACTERISATION THEOREM

Proof. We use induction on w. If w = 1, Spoiler wins in
CSm1 (A,B) only if there is an atomic formula ϕ, so verifying
|ϕ| = 1, such that (A,B) |= ϕ. Reciprocally, if |ϕ| = 1 and
(A,B) |= ϕ, then ϕ is an atomic formula and spoiler wins in
CSm1 (A,B).
We now assume the equivalence for v < w.
To prove the forward direction of the equivalence, suppose
Spoiler has a winning strategy in the game CSmw (A,B) starting
with:

• ¬-move. Spoiler has a winning strategy in CSmw−1(B,A),
so by induction hypothesis there is a formula ψ verifying
|ψ| ≤ w − 1 and (B,A) |= ψ. Finally (A,B) |= ¬ψ and
|¬ψ| = 1 + |ψ| ≤ w so we get (2).

•
∨

-move, choosing u, v, C and D such that 1 ≤ u, v < w
with u+ v = w, splitting A into C and D. Spoiler has a
winning strategy in CSmu (C,B) and CSmu (D,B), so by
the induction hypothesis, there are formulae ψ and θ such
that |ψ| ≤ u, |θ| ≤ v, (C,B) |= ψ and (D,B) |= θ.
We have that C |= ψ and D |= θ, so A |= ψ ∨ θ.
Conversely, B |= ¬ψ and B |= ¬θ, and consequently
B |= ¬(ψ ∨ θ).
It follows that (A,B) |= ψ ∨ θ, and since |ψ ∨ θ| =
|ψ|+ |θ| ≤ u+ v = w, we get (2).

•
∧

-move; and by a symmetrical argument to the
∨

-move
we get (2).

• ∃≥k-move; choosing j ∈ [m], k ∈ N, a k-choice function
F k on A and for every Gk ∈ F kB , selecting G from
Gk to form B(∗k/u) =

⋃
Gk∈Fk

B
B(G/u). Spoiler has a

winning strategy in CSmw−1(A(F
k/j), B(∗k/j)), so by

the induction hypothesis, there is a formula ψ such that
|ψ| ≤ w − 1 and (A(F k/j), B(∗k/j)) |= ψ.
Define ϕ := ∃≥kxjψ. We have that A(F k/j) |= ψ, and
so for all 1 ≤ i ≤ k, (A, α(F ki /j)) |= ψ and therefore
A |= ϕ.
Now suppose that there exists a k-choice function Gk on
B and a (B, β) ∈ B such that {(B, β(Gki (B, β)/j)) :
1 ≤ i ≤ k} |= ψ. Then there is an i ∈ [k] such
that (B, β(Gki (B, β)/j)) is part of the family B(∗k/j)
through the selected G, but B(∗k/j) |= ¬ψ, which is a
contradiction. Therefore B |= ¬ϕ.
Finally (A,B) |= ϕ and |ϕ| = |ψ| + 1 ≤ w, so we get
(2).

• ∀≥k-move; a symmetrical argument to the
∨

-move yields
(2).

To prove the backward direction, assume there is a formula
ϕ of size w > 1 such that (A,B) |= ϕ. We show that Spoiler
has a winning strategy in CSmw (A,B). Let us consider the form
of the formula ϕ:

• ϕ = ¬ψ: Spoiler plays the ¬-move and gets in the
position CSmw−1(B,A). Since |ψ| < w and (B,A) |= ϕ,
Spoiler has a winning strategy in CSmw−1(B,A) by induc-

tion hypothesis, and therefore Spoiler has also a winning
strategy in CSmw (A,B).

• ϕ = ψ ∨ θ: Define C = {(A, α) ∈ A|(A, α) |= ψ},
D = {(A, α) ∈ A|(A, α) |= θ}, u and v such that
w = u + v, |ψ| ≤ u and |θ| ≤ v. Spoiler plays the∨

-move associated to u, v, C,D and gets to CSmu (C,B)
or CSmv (D,B) according to Duplicator’s choice. We have
that (C,B) |= ψ, (D,B) |= θ and therefore by induction
hypothesis Spoiler has a winning strategy in CSmu (C,B)
or CSmv (D,B), and therefore Spoiler has also a winning
strategy in CSmw (A,B).

• ϕ = ψ ∧ θ: a symmetrical argument shows that Spoiler
has a winning strategy in CSmw (A,B).

• ϕ = ∃≥kxjψ: Since A |= ϕ, there is a k-choice function
F k on A such that (A, α(F ki ((A, α)/j)) |= ψ, for every
1 ≤ i ≤ k and for all (A, α) ∈ A. Thus, A(F k/j) |= ψ.
On the other hand, B |= ¬ϕ, thus from every Gk on B
we can select G such that B(G/j) |= ¬ψ and therefore,
B(∗k/j) |= ¬ψ.
Finally we have that (A(F k/j), B(∗k/j)) |= ψ and
|ψ| = |ϕ| − 1 < w, so by induction hypothesis, Spoiler
has a winning strategy in the game
CSmw−1(A(F

k/j), B(∗k/j)) and therefore Spoiler has
also a winning strategy in CSmw (A,B).

• ϕ = ∀≥kxjψ: a symmetrical argument shows that Spoiler
has a winning strategy in CSmw (A,B).

APPENDIX B
PROOF OF THEOREM VI.1

We want to show that Duplicator can win a k-round EF
game on L1 and L2 taken to be of length at least (t + 1)k.
The key idea behind the proof is that, from a given assignment,
Spoiler can ”only look up to a certain distance” in the two
directions on the line.

Proof. Suppose L1 and L2 are linear orders of length at least
(t+ 1)k, on which the EF game will be played.
After i moves, we denote by a the “position”: a is a tuple
consisting of minL1

,maxL1
concatenated to the i moves

played on L1: a = (a−1, a0, a1, . . . , ai), a−1 = minL1 ,
a0 = maxL1). Similarly, we define the tuple b of moves
played on L2.
For −1 ≤ j, l ≤ i, we prove that regardless of Spoiler’s
choices, Duplicator can maintain the following inequalities:

1) if d(aj , al) ≤ (t+ 1)k−i, then d(bj , bl) = d(aj , al).
2) if d(aj , al) > (t+ 1)k−i, then d(bj , bl) > (t+ 1)k−i.
3) aj ≤ al iff bj ≤ bl.

Using those inequalities for i = k moves, property 3. yields
that Duplicator win the k-round EF game on L1 and L2.
Since this happens no matter what Spoiler plays, the game
characterisation theorem for bounded counting rank implies
that L1 ≡Ct[k] L2.
We now prove by induction on the moves (on i) that the
inequalities can be maintained. The base case of i = 0 is
immediate.



For the induction step, assume the inequalities stand for i
moves, and suppose without loss of generality that Spoiler
makes his (i + 1)th move on L1. Spoiler plays the set M of
cardinality k, in L1. We describe Duplicator’s response, a set
N on L2. In the second part of the move, if Spoiler picks Nq
on L2 for q ∈ [t] (i.e. bi+1 = Nq), Duplicator will respond
with Mq on L1 (i.e. ai+1 =Mq).

If aj =Mq for j ≤ i and q ∈ [t], Duplicator sets Nq to be
bj . Suppose there is an element Mq ∈M for which this is not
the case. We define j, l ≤ i such that aj < Mq < al and that
there is no other previously played moves on L1 inside this
interval. By property 3., the interval between bj and bl contains
no other elements of b. Then we have two cases regarding the
length of the interval:

• If d(aj , al) ≤ (t+1)k−i. Then by property 1. and induc-
tive hypothesis, d(bj , bl) = d(aj , al), and the intervals
[aj , al] and [bj , bl] are isomorphic. Duplicator picks Nq so
that d(aj ,Mq) = d(bj , Nq) and d(Mq, al) = d(Mq, bl),
which ensures that the three properties hold for i + 1
moves.

• d(aj , al) > (t + 1)k−i. In this case by property 2.,
d(bj , bl) > (t+ 1)k−i. We have three possibilities:

– If d(aj ,Mq) ≤ (t + 1)k−(i+1). Then d(Mq, al) >
(t+1)k−(i+1), and Duplicator picks Nq on [bj , bl] so
that d(bj , Nq) = d(aj ,Mq) maintaining properties
1 and 3. Since d(Mq, bl) > (t + 1)k−(i+1) this
maintains d(Nq, bl) > (t + 1)k−(i+1) by property
2.(i), hence property 2.(i+ 1).

– d(Mq, al) ≤ (t+ 1)k−(i+1), in which case a similar
reasoning applies.

– Otherwise, Spoiler has picked Mq such that both:
d(aj ,Mq) > (t + 1)k−(i+1), d(Mq, al) > (t +
1)k−(i+1). There can be at most t such Mq as
|M | = t.
Since d(bj , bl) > (t + 1)k−i, there are at least t
distinct elements in L2 between bj + (t+ 1)k−(i+1)

and bl− (t+1)k−(i+1). Duplicator picks the first Nq
on that interval that is not already in N . This ensures
that, d(bj , Nq) > (t+1)k−(i+1) and d(Nq, bl) > (t+
1)k−(i+1), therefore satisfying all three properties.

Thus, in all the cases, the induction is preserved.

APPENDIX C
PROOF OF LEMMA VII.4 PARTS 1 AND 2

A. Part 1

Let v be a leaf of T , by definition VII.1, v if of the
form T

⟨C,D⟩
ψ where ψ is an atomic formula, say R(u, u′)

where u, u′ ∈ {x, y,min,max} and R ∈ {<,=, succ}. Since
C,D |= R(u, u′), it is easy to verify that for all (A, α) ∈ C
and (B, β) ∈ D:

1) ¡-type(α(u), α(u′)) ̸=¡-type(β(u), β(u′)) or
2) both:

• MIN[d(α(u), α(u′)), d(β(u), β(u′))] ≤ 1 and,
• d(α(u), α(u′)) ̸= d(β(u), β(u′)).

First if u ̸= u′, consider the separator of (C,D), δ1, defined
as:

δ1 =

{
1 if p = {u, u′}
0 otherwise.

Since w(δ1) = 1, any minimal separator of C < D has weight
at most 1.

Now, if u = u′, then C = ∅ or D = ∅, and then δ1 = 0 is
a separator for C,D.

Finally, w(δ) ≤ 1 for δ a minimal separator of v.

B. Part 2

Let v be a node of T of the form T
⟨C,D⟩
ψ with two children

v1 and v2. Let δ1 and δ2 be minimum separators of v1 and v2
respectively. We first prove the straightforward proposition:

Proposition C.1. δ′ = δ1 + δ2 is a separator of v.

Proof. Let us fix (A, α) ∈ C and (B, β) ∈ D. Suppose ψ
is of the form ψ1 ∨ ψ2. The case ψ of the form ψ1 ∧ ψ2 is
symmetrical.

By definition VII.1, there are C1, C2 such that δ1 is a
separator of T ⟨C1,D⟩

ψ1
and δ2 is a separator of T ⟨C2,D⟩

ψ2
and

with C1 ∪ C2 = C.
Whether (A, α) ∈ C1 or (A, α) ∈ C2, since δ′ ≥ δ1, δ2 it is
clear that δ′ defined as above satisfies the separation condition:

1) ¡-type(α(u), α(u′)) ̸=¡-type(β(u), β(u′)) or
2) both:

• MIN[d(α(u), α(u′)), d(β(u), β(u′))] ≤ δ′({u, u′})
and,

• d(α(u), α(u′)) ̸= d(β(u), β(u′)).
Therefore δ′ is a separator of v.

We conclude with the upper bounding of the weight by
showing that w(δ′) ≤ w(δ1) + w(δ2). By definition VII.3, it
is easy to check that both b(δ′) ≤ b(δ1) + b(δ2) and c(δ′) ≤
c(δ1) + c(δ2) and therefore:

w(δ′)2 = c(δ′)2 + b(δ′)

≤ (c(δ1) + c(δ2)
2 + b(δ1) + b(δ2)

= c(δ1)
2 + c(δ2)

2 + b(δ1) + b(δ2) + 2c(δ1)c(δ2)

≤ w(δ1)
2 + w(δ2)

2 + 2w(δ1)w(δ2)

= (w(δ1) + w(δ2))
2

APPENDIX D
END OF THE PROOF OF LEMMA V II.4 PART 3.

We derive Lemma V II.4 part 3. from the consequence on
the separator weight of the key Lemma VII.7:

Proof. Suppose v be a node of T that has exactly one child
v1, we consider δ a minimal separator of il(v) and δ1 be a
minimal separator of < A1, B1 >:= il(v1).
We want to show that w(δ) ≤ w(δ1)+t. From the definition of
a syntax tree we know that either sl(v) = ¬ or sl(v) = Q≥ku,



for some Q ∈ {∃,∀}, k ≤ t, and u ∈ {x, y, z}.
Case 1: sl(v) = ¬.
In this case il(v) =< B,A > and δ1 is a separator for il(v),
therefore w(δ) ≤ w(δ1) ≤ w(δ1) + t.
Case 2: sl(v) = Q≥ku.
We call δ′ the separator for il(v) defined in Lemma VII.7.
Since δ is a minimal separator for il(v), w(δ) ≤ w(δ′). We
will show that w(δ′) ≤ w(δ1) + k to finish the proof.
Let us choose u′, u′′ so that {x, y, z} = {u, u′, u′′}. From the
definition of δ′ we get the following:

• c(δ′) = δ′({u′, u′′}) ≤ c(δ1) + k − 1
• δ′({min,max}) ≤ b(δ1) + k − 1

Proposition D.1. For any f, g ∈ {x, y, z},
δ′({min, f}) + δ′({g,max}) ≤ b(δ1) + 2c(δ1) + 2(k − 1).

Proof. • Suppose f = u or g = u, then δ′({min, f}) =
0 or δ′({g,max}) = 0. And so δ′({min, f}) +
δ′({g,max}) ≤ MAX[b(δ1), b(δ1) + c(δ1) + k − 1] by
definition V II.3 and Lemma VII.7.

• Otherwise we get f, g ∈ {x, y, z} \ {u} and:
– δ′({min, f}) =MAX(δ1({min, f})), δ1({min, u}))+
δ1({u, f}) + k − 1

– δ′({max, g}) =MAX(δ1({max, g})), δ1({max, u}))+
δ1({u, g}) + k − 1

So:

δ′({min, f}) + δ′({max, g}) ≤
MAX[δ1({min, f}) + δ1({max, g}),
δ1({min, f}) + δ1({max, u})) + δ1({u, g}) + k − 1,

δ1({min, u}) + δ1({u, f}) + k − 1 + δ1({max, g}),
δ1({min, u}) + δ1({u, f}) + δ1({max, u})+
δ1({u, g}) + 2(k − 1)]

Therefore:

δ′({min, f})+δ′({g,max}) ≤ b(δ1)+2c(δ1)+2(k−1)

.

From Proposition D.1 we can upper bound the border distance:

b(δ′) =MAX[δ′({min, f})+δ′({g,max}), δ′({min,max})]
≤ b(δ1) + 2c(δ1) + 2(k − 1)

Finally we can conclude:

w(δ′)2 = c(δ′)2 + b(δ′)

≤ (c(δ1) + k − 1)2 + b(δ1) + 2c(δ1) + 2(k − 1)

= c(δ1)
2 + b(δ1) + 2kc(δ1) + k2 − 1

≤ w(δ1)
2 + 2kw(δ1) + k2 = (w(δ1) + k)2.

As a final consequence:

w(δ) ≤ w(δ′) ≤ w(δ1) + k ≤ w(δ1) + t.

APPENDIX E
FIGURES FOR THE PROOF OF LEMMA VII.7

APPENDIX F
FIGURE FOR GAP VARIABLES ILLUSTRATION DEFINITION
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Fig. 7. Case 3 of the proof of Lemma VII.7.
We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable u accounts
for the ability of the pair {u, z} to separate. The crossed dot on A represents the choices on the linear order from Fk , the crossed dot on B represent the
best attempt at a response for indistinguishability. In Case 3, a choice on A is in two or more balls, which cannot be matched by an element of B.
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Fig. 8. Case 4 of the proof of Lemma VII.7.
We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable u accounts
for the ability of the pair {u, z} to separate. The crossed dot on A represents the choices on the linear order from Fk , the crossed dot on B represent the
best attempt at a response for indistinguishability. In Case 4, a choice on A is in one ball and not in another, which cannot be matched by an element of B.
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Fig. 9. Case 5 of the proof of Lemma VII.7.
We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable u accounts
for the ability of the pair {u, z} to separate. The regions of the linear orders that are not covered by any of the balls are the gaps, in purple on the Figure (in
the example, the {min, x} gap is empty. The crossed dots on A represents the choices on the linear order from Fk , the crossed dots on B represent the best
attempts at a response for indistinguishability. In Case 5, p choices on A are in a gap, which cannot be matched by p elements of B from the corresponding
gap.
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Fig. 10. We associate a ball with center α(u) of radius δ1(u, v) for every u ∈ {x, y,min,max} on A (resp. β(u) on B). Each ball associated to variable
u accounts for the ability of the pair {u, z} to separate. The regions of the linear orders that are not covered by any of the balls are the gaps, in purple on
the Figure.
In the example on A, the {min, x} gap is empty, the gap variables for the {x, y} gap are (x, y) and the gap variables for the {y,max} gap are (y,max).
On B, the {min, x} gap is empty. The gap variables for the {x, y} gap on B are (min, y), as the δ1({min, z}) ball covers more of the gap on the left
than the δ1({min, z}) ball. Finally on B the gap variables for the {y,max} gap are (y,max)


