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Nets and filters Sl

Ultrafilters and
Tychonoff 's

Recall what nets are: cepsin
eorem [3]

Definition (Net) B T
A subset {x,}aca C X is called a net if the index set A is Motivation
partially ordered and (upward) directed. A subnet is a net
{ys}ses withamap n: B — Ast. yg = xpg), nis
monotone, and for every « € A there is 8 € B with

n(p) > a.

A net {xa}aca is convergent to x € X,
x = limyea Xo = lim x,, if for very open neighbourhood U
of x, there is ag € A st. x, € U for all a > «p.

Lemma
K C X is compact iff every net on K contains a convergent
subnet to a point in K.
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Suppose [ is a non-empty set, 7 C P(/) is called a filter on /
if

() leF,0¢gF. Uttrafifers
(i) If A,B € Fthen ANB € F.
(i) If AC B and A€ F then B € F.

Some well known examples are:
— {X : R\ X has Lebesgue measure zero}
— It || >k, {X: I\ X]| <k}
— Frechet filter: {X : |I'\ X| < w} for I an infinite set.

— Example of principal (filter has a € minimum):
{AC I :x e A} for some x € I.
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Note that the sets of filter can be ordered by the inclusion
property.

Such a poset satisfies the conditions of Zorn's lemma as we
can define for each chain a maximal element. Filters and

Ultrafilters
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Definition (ultrafilter)
An ultrafilter is a maximal filter (through the poset of filters).

Lemma
(iv) U is an ultrafilter iff VA C I, either AcU or |\ A€ U.

Which is equivalent to:

(iv') If Ul_; Ai € U, then some A; € U.
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U is an ultrafilter ifF VA C |, either Ac U or | \ A€ U.
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Proof.
<: Suppose U is not a maximal, i.e there exists F 2 U. Filters and

Ultrafilters
Consider A € F\U, by assumption we must have [\ A €
U, but since | € U and U is closed under N, A € U,
which is a contradiction.

=: Given U an ultrafilter and A € U define:

Fa=4{Xel:(Y\A) CX forsome Y elU}

It is not too hard to check that Fj4 is a filter on [ that
contains / \ A and U. Therefore | \ A€ Fa =U.

O
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The compactness of a topological space can be restated in theorem [3]
terms of convergence of ultrafilters: Grégoire Fournier

— For (X, 7) a topological space and F a filter on it, we
say that /im F = x if every neighbourhood of x has a
non-empty intersection with all of the elements of F. i

theorem

— Furthermore, if F is an ultrafilter, every set that
intersects every element of F must lie in F. Then,
lim F = x iff every open neighbourhood of x is
contained in F.

If every two distinct points in X can be separated by disjoint
open neighbourhoods, the space is called Hausdorff, and the
limit is unique.
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Lemma Grégoire Fournier
X is compact if and only if every ultrafilter on X converges
to a point in X.

PI’OO]C. Compactness
and Tychonoff’s

=-: Suppose X is compact, and let U/ be an ultrafilter on  |KiAl
X. If U does not converge to any point in X, then for any
point x € X, x contained in Uy € 7, with U, € U. Thus,
{Ux}xex forms an open cover of X, which must contain
a finite subcover, Ui,..., U,. But UJ" U =XcClU,so
one U; must be in U by (iv'), a contradiction.

0J
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Lemma
X is compact if and only if every ultrafilter on X converges
to a point in X.

Proof.
Compactness

<:Let C={U; : i €} be an open cover of X. Suppose  [HEEPSENIA

theorem

Grégoire Fournier

that it contains no finite subcover, i.e any finite intersec-
tion (X \ U1)N...N(X\ U,) is non-empty.

Therefore F = {F € X : X\ U C F, for some U € C}
is a filter. Consider U an ultrafilter containing F, by
assumption, let x = limU. Since C is a cover, there
is Ui € C with x € U;. Finally, X\ U; € U and since
x = IlimU, U; € U, a contradiction.

O
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Let {(X,,7y)}yer be a collection of topological spaces. The
Cartesian product X = [[ . X, is the set of functions

x: T = U er Xy st. x(7) € Xv. We write x(7) = x, and

x = {xy}yer. Let m, : X = X, be the usual projection map.

We define the product topology on the Cartesian product X s
to be the topology generated by the sets 777_1(U7), where theorem

U, € 7,. It is interesting to note that:

{ﬂ W,;l(U,') : where F is finite and the U; are open in X}
ieF

is a base for the product topology.
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Some remarks:

— The product topology is the minimal topology on X in

which all the projection maps are continuous. Compactness
* . - and Tychonoff’s
— In the same way, the weak* topology is the minimal theorem
topology on X* in which the J(x)(x*) = x*(x) are
continuous.

— The weak topology is the minimal topology on X in
which elements of X* are continuous.
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Theorem (Tychonoff's compactness theorem) Compactness
and Tychonoff’s
If all X,y € T, are compact, then the Cartesian product e

X = Hwer X, is compact in the product topology.




Tychonoff’s compactness theorem

Proof.

Let U be an ultrafilter on X. For any v € I', consider

U, = m(U). It is easy to check that U, is an ultrafilter on
X,. Since X, is compact, there exists a limit x, = lim U,,.
Let us show that x = {x,} er = lim U.

Take U an open neighbourhood of x in the product topology.

Then along with x, U contains a finite intersection of basis
sets ()i, 7, L(U;). We have x,, € U;, and hence U; € U, ,
which means there exist A; € U such that 7r7 (Aj)) = U;.
Then A; C 73,1 (U;), which |mp||es that 7.} (U;) € U, for
each /i, and fmaIIy Niz1 ™5 L) eu.

Since U contains that intersection, U must be in the

ultrafilter 4. ]
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Compactness
and Tychonoff’s
theorem
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— Short proof of the Compactness Theorem using Los's
Theorem on ultraproducts.

— ldeals, dual of filter, close downwards and under finite
union.

Ultrafilters in

— aclub: C Ckisaclubifitis closed and unbounded in logic
K, club filter is Ce(k) = {A C k| club C, C C A} where
K is a regular uncountable cardinal.

— Cohen Forcing uses P-generic filters over a model to
show CON(ZFC + — CH).
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