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Motivation

I How much information does the output of a learner
reveal about its input? A natural example of a quantity
that can be used to quantify the revealed information is
the mutual information I (A(Z );Z ) between the output
of an algorithm A and its input Z (i.i.d samples).

I Measuring the information complexity (IC) of a learning
algorithm can be very informative, as it is related to
several properties or guarantees that we might wish to
establish. In particular, low information complexity
entails generalization guarantees[1] [4][2].
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Growth function

Definition (Growth function (def 3.3))
The growth function ΠH : N→ N for a hypothesis set H is
defined as:

∀m ∈ N,ΠH = max{x1,...,xm}|{(h(x1), ..., h(xm) : h ∈ H}|

ΠH(m) is the maximum number of distinct ways in which m
points can be classified using hypotheses in H.

This provides a combinatorial measure of the richness of the
hypothesis set H.
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Link with Rademacher complexity

Theorem (Massart (thm. 3.3))
If H takes values in {−1, 1},

Rm(H) ≤
√

2log(ΠH(m))

m

∀δ > 0, wp ≥ 1− δ, ∀h ∈ H,

Rm(H) ≤ R̂m(H) +

√
2log(ΠH(m))

m
+

√
log(1/δ)

2m
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VC-dimension

Definition (VC-dimension (def 3.4))
The VC-dimension of H is the size of the largest set S for
which all dichotomies can be realized by functions in H, i.e
ΠH(m) = 2m.

We say S is fully shattered by H.

VCdim(H) = {m ∈ N = 2m}|

VCdim(H) = d if there exists a set of size d that can be fully
shattered.
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VC-dimension

Hypothesis classes with bounded Vapnik-Chervonenkis (VC)
dimension exhibit strong uniform convergence, which implies
sample-efficient PAC learning.

Theorem (Sauer (thm. 3.5))
If H takes values in {−1, 1} with VC-dimension d , then
∀δ > 0, wp ≥ 1− δ, ∀h ∈ H:

Rm(H) ≤ R̂m(H) +

√
2d log( emd )

m
+

√
log(1/δ)

2m
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KL divergence

Definition (Kullback–Leibler divergence)
The KL divergence, DKL (also called relative entropy), is a
measure of how one probability distribution is different from
a second, reference probability distribution.
On a probability space X for two distribution P,Q:

DKL(P||Q) =
∑
x∈X

P(x)log(
P(x)

Q(x)
)

DKL(P||Q) ≥ 0
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Mutual information

Definition (Mutual information)
The MI of two random variables is a measure of the mutual
dependence between the variables. More specifically, it
quantifies the "amount of information" obtained about one
random variable by observing the other random variable.

For two random variable with values in X and Y:

I (X ;Y ) = DKL(P(X ,Y )||PXPY )

I (X ;Y ) =
∑
y∈Y

∑
x∈X

p(X ,Y (x , y)log(
p(X ,Y (x , y)

pX (x)pY (y)
)
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Reasoning about generalization via MI

I Let A : Zn →W be a randomized or deterministic
algorithm.

I Let D be a probability distribution on Z.

Theorem (MI of an algorithm [1])

|EZ←Dn,A[`(A(Z ),Z )− `(A(Z ),D)]| ≤
√

2 I (A(Z );Z )

n
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Reasoning about generalization via CMI

I Let A : Zn →W be a randomized or deterministic
algorithm, D be a probability distribution on Z.

I Let Z̃ ∈ Zn×2 consisting of 2n samples drawn
independently from D.

I Let S ∈ {0, 1}n be uniformly random.
I Define Z̃S ∈ Zn by (Z̃S)i = Z̃i ,Si+1.

Then define CMID(A) := I (A(Z̃S);S |Z̃ )

Theorem (CMI of an algorithm [3])
|EZ←Dn,A[`(A(Z ),Z )− `(A(Z ),D)]| ≤

√
2CMID(A)
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Conclusion

Recall ERM is argminw∈W `(w ,Z ).

Theorem ([3])
Let Z = X × {0, 1}, W = {: X → {0, 1}} an hypothesis
class with VC dimension d . Then there exists an empirical
risk minimizer A : Zn →W st. CMI (A) ≤ d log(n) + 2.

Do all classes with bounded VC dimension admit a learner
with low information complexity?
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